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Some practical matters:
Grading: Exam (70%) + Homework & presentation (30%) + 5% bonus for excellent performance

Presentations: On a recent paper (there will be a list on BS), Usually done in pairs.

So, how to find study material?This course follows no specific text book!!  

Google it! Ask chat GPT, consult your local shaman, etc. Use whatever recourses you can find!

Make sure to read the papers mentioned in the slides, homework and presentations. 

Some recommendations:



Superconductivity: How it is usually introduced

Zero resistance! Useful for MRI & stuff

Expulsion of magnetic field Fancy levitating Japanese trains!
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Ehrenfest
Lorentz 

Bohr Onnes

Kamerlingh Onnes Laboratory (1900s)

Leiden: Where it all began (and continues to this day!)



Timeline
1911 Kamerlingh Onnes (Leiden)

1933 Meissner effect

1950 Ginzburg - Landau theory

1957 Abrikosov vortex, BCS theory

1962 Josephson effect

1986-now Unconventional superconductors

High-temperature SCs YBa2Cu3O7

Heavy Fermions CeCu2Si2
Iron-based LaFeAsO

Organic molecules: (BEDT-TTF)2X

Twisted bilayer graphene (2018)

More on the way! ;-)
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Size effect: Recall the particle in a box from QM
Quantization and confinement in normal matter

Particle in an infinite potential well 
of size LA
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Normal materials:  

Physical properties dominated by fermi electrons (spin ½ = Fermions).

Fermions must have unique quantum numbers (they are individual particles). 

Wavefunction is determined by the number of particles.

Ψ (fermi electrons in a cm3 metal) ~ Ψ (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒1023)
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Boundary conditions: particle in a box vs confined SC

N/vacuum 
(Dirichlet boundary condition)

Density is zero at the boundary

SC/vacuum
(Neumann boundary condition)

The normal component of the gradient of Ψ is zero

Va
cu

um

Vacuum

VacuumVa
cu

um

(Supercurrent cannot flow outwards)MORE DETAIL IN MOSHCHALKOV



Where would the order parameter nucleate first? 

Boundary conditions: Confined Superconductors
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Boundary conditions: Confined Superconductors

Moshchalkov et al, Phys. Rev. Lett. 86, 7 (2001)
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What is the physical 
significance of  λ /ξ?

(see later)
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Food for thought: 
Do superconductors always expel magnetic field?

True or false: 
When an external magnetic field is applied to a SC, it induces a supercurrent, 
whose role is to cancel out the applied field. 

𝐵𝐵0 Superconductor

𝛹𝛹 = Ψ(r) 𝑒𝑒𝑖𝑖𝜑𝜑(𝑟𝑟)



End of Lecture 1

Self study: 
Find out what happens to λ & ξ near Tc

A lot of the material covered in this lecture 
can be found on Moshchalkov’s book 

Kaveh Lahabi (2025)
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