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Some practical matters:

Grading: Exam (70%) + Homework & presentation (30%) + 5% bonus for excellent performance

Presentations: On a recent paper (there will be a list on BS), Usually done in pairs.

This course follows no specific text book!!  So, how to find study material?
Google it! Ask chat GPT, consult your local shaman, etc. Use whatever recourses you can find!

Make sure to read the papers mentioned in the slides, homework and presentations.
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Superconductivity: How it is usually introduced

Superconductor




Superconductivity: How it is usually introduced
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Leiden: Where it all began (and continues to this day!)
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Kamerlingh Onnes Laboratory (1900s)



Timeline

1911 Kamerlingh Onnes (Leiden)

1933 Meissner effect %

1950 & Ginzburg - Landau theory é

1957 Abrikosov vortex, BCS theory

1962 Josephson effect ——
1986-now Unconventional superconductors

High-temperature SCs YBa,Cu;0,

Heavy Fermions CeCu,Si, | _ La:.Ba,CuO,
Iron-based LaFeAsO
Organic molecules: (BEDT-TTF),X

Twisted bilayer graphene (2018)

More on the way! ;-)
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THEORETICAL PHYSICS
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Size effect: Recall the particle in a box from QM

Quantization and confinement in normal matter

1 (—hV — eA)2¢ + Uy = By

2m

Table 1.1 Confinement by the infinite potential well
Confinement length L4  Energy F)y  Temperature 71" #

1 A 38 eV
1 nm 0.38 eV

1 pm 0.38 neV

4The corresponding temperature at which the kinetic energy

of a classical 1D-particle is equal to E1, given by Eq. (1.1).

Particle in an infinite potential well
of size L,




Size effect: Recall the particle in a box from QM
Quantization and confinement in normal matter

1 (—hV — eA)2¢ + Uy = By

2m

Table 1.1 Confinement by the infinite potential well
Confinement length L4  Energy F)y  Temperature 71" #

1 A 38 eV ~4x10° K
1 nm 0.38 eV ~4x10° K
1 pm 0.38 peV ~ 4 mK

4The corresponding temperature at which the kinetic energy

of a classical 1D-particle is equal to E1, given by Eq. (1.1).

Particle in an infinite potential well
of size L,




Normal materials:

Physical properties dominated by fermi electrons (spin %2 = Fermions).

Fermions must have unigue quantum numbers (they are individual particles).

Wavefunction is determined by the number of particles.

W (fermi electrons in a cm3 metal) ~ V¥ (eq, €5, €3, ..., €1(23)
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All particles live in a single macroscopic state
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Normal materials:

Physical properties dominated by fermi electrons (spin %2 = Fermions).

Fermions must have unigue quantum numbers (they are individual particles).

Wavefunction is determined by the number of particles.

W (fermi electrons in a cm3 metal) ~ ¥ (eq, 5, €3, ..., €123)

Superconductors: Bosonic condensates

All particles live in a single macroscopic state

¥

condensate

Don’t think of it as a collection of individual pairs/particles:

All paired electrons become a single macroscopic entity b (61, e;)
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Normal materials: 5

Physical properties dominated by fermi electrons (spin %2 = Fermions).

Fermions must have unique quantum numbers (they are individual particles). 1 -

Wavefunction is determined by the number of particles.

W (fermi electrons in a cm3 metal) ~ ¥ (eq, 5, €3, ..., €123)

Superconductors: Bosonic condensates :
a‘_e(\a\-

All particles live in a single macras n et %
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Don’t think ¢ ..'as a collection of individual pairs/particles:

All paired electrons become a single macroscopic entity Y (61, 62)
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Occupied

Normal (T>Tc) SC (T<Tc)

Going forward: Forget your fermionic physics
Think like a bosonic condensate!



(Non-Fermi) electrons & holes still exist below the
gap (or above the gap as exited electrons)

Occupied

Normal (T>Tc) SC (T<Tc)
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Occupied
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Going forward: Forget your fermionic physics
Think like a bosonic condensate!



Elegance of superconductors: Macroscopic wavefunction

Schrodinger

L (—thV — eA)* ¢ + Uyp = Ev Y = |¥(r)|e®™)
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V X A (vector potential) = uyh (magnetic field)
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Elegance of superconductors: Macroscopic wavefunction

Schrodinger

L (—thV — eA)* ¢ + Uyp = Ev Y = |¥(r)|e®™)

2m

Ginzburg-Landau equations

1

*

e’ = 2e

—(_Zhv — €*A)2¢s - 5‘¢8‘2¢s = —as m* = 2m,

2m*

V X A (vector potential) = uyh (magnetic field)




Boundary conditions: particle in a box vs confined SC

N/vacuum
(Dirichlet boundary condition)

quantum particle
in a box

2
L
4 L 3
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Vacuum
wnnden

Density is zero at the boundary

MORE DETAIL IN MOSHCHALKOV



Boundary conditions: particle in a box vs confined SC

N/vacuum SC/vacuum
(Dirichlet boundary condition) (Neumann boundary condition)

confined
superconducting
condensate

quantum particle
in a box
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Density is zero at the boundary

The normal component of the gradient of W is zero
MORE DETAIL IN MOSHCHALKOV (Supercurrent cannot flow outwards)



Boundary conditions: Confined Superconductors

Where would the order parameter nucleate first?

confined
superconducting
condensate




Boundary conditions: Confined Superconductors

Where would the order parameter nucleate first?

confined
superconducting
condensate

Moshchalkov et al, Phys. Rev. Lett. 86, 7 (2001)



Once in the SC state, only two length scales matter: ¢ and A

Y — |‘~I—’(r) |ei§0(r)
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¢ : Coherence Length
“stiffness” of the amplitude

How rapidly does |¥|
(Cooper pair density) “bend”
in real space




Once in the SC state, only two length scales matter: ¢ and A
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in real space screening of magnetic field?

Superconductor
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Once in the SC state, only two length scales matter: ¢ and A

Y = |¥(r)|e™

¢ : Coherence Length
“stiffness” of the amplitude

How rapidly does ||
(Cooper pair density) “bend”
in real space

A: magnetic penetration depth
(stiffness of the phase @)

A\: Characteristic decay length of A and € are independent
magnetic fields inside a SC material parameters.

What'’s the link between ¢ and
screening of magnetic field?

Superconductor

What is the physical
significance of A /€?
(see later)




Food for thought:
Do superconductors always expel magnetic fielde

Superconductor

Y — |q1(r)|ei<p(’r)

True or false:

When an external magnetic field is applied to a SC, it induces a supercurrent,
whose role is to cancel out the applied field.



NANOSTRUCTURED

End Of Lecture 1 SUPERCONDUCTORS

A lot of the material covered in this lecture ﬁmy‘ﬂ
can be found on Moshchalkov’s book * s

Kaveh Lahabi (2025)
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