Superconductivity: Lecture 1 Introduction

Kaveh Lahabi (2025)

Lahabi Lab: Quantum Materials & Devices

(Since December 2022)

Some practical matters:

Grading: Exam (70%) + Homework & presentation (30%) + 5% bonus for excellent performance Presentations: On a recent paper (there will be a list on BS), Usually done in pairs.

This course follows no specific text book!! So, how to find study material?

Google it! Ask chat GPT, consult your local shaman, etc. Use whatever recourses you can find!

Make sure to read the papers mentioned in the slides, homework and presentations.

Some recommendations:

Superconductivity: How it is usually introduced

Zero resistance!

Useful for MRI & stuff

Expulsion of magnetic field

Fancy levitating Japanese trains!

Superconductivity: How it is usually introduced

Leiden: Where it all began (and continues to this day!)

Kamerlingh Onnes Laboratory (1900s)

Timeline

- Kamerlingh Onnes (Leiden) 1911
- 1933 Meissner effect
- 1950

1957

- **Ginzburg** Landau theory
- Abrikosov vortex, BCS theory
- 1962
- Josephson effect

Temperature

- Unconventional superconductors 1986-now
 - YBa₂Cu₃O₇ High-temperature SCs **Heavy Fermions** Iron-based

- CeCu₂Si₂
- LaFeAsO
- Organic molecules: (BEDT-TTF)₂X
- Twisted bilayer graphene (2018)
- More on the way! ;-)

Neutron stars are superconductors

ATMOSPHERE

HYDROGEN. HELIUM. CARBON

OUTER CRUST

THEORETICAL PHYSICS

A black hole full of answers

Jan Zaanen

A facet of string theory, the currently favoured route to a 'theory of everything', might help to explain some properties of exotic matter phases such as some peculiarities of high-temperature superconductors.

Article

Traversable wormhole dynamics on a quantum processor

Superconductor-Semiconductor Nanowire Devices

The Higgs mode in disordered superconductors close to a quantum phase transition

Neutron stars are superconductors

ATMOSPHERE

HYDROGEN. HELIUM. CARBON

THEORETICAL PHYSICS

A black hole full of answers

Jan Zaanen

A facet of string theory, the currently favoured route to a 'theory of everything', might help to explain some properties of exotic matter phases such as some peculiarities of high-temperature superconductors.

Article

Traversable wormhole dynamics on a quantum processor

Size effect: Recall the particle in a box from QM

Quantization and confinement in normal matter

$$\frac{1}{2m} \left(-i\hbar \nabla - e\boldsymbol{A} \right)^2 \psi + U\psi = E\psi$$

$$E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2 (2\pi/\lambda_n)^2}{2m} = \frac{\hbar^2 \pi^2}{2m L_A^2} n^2$$

Table 1.1 Confinement by the infinite potential well		
Confinement length L_A	Energy E_1	Temperature $T^{\rm \ a}$
1 Å 1 nm 1 μm	38 eV 0.38 eV 0.38 µeV	

^aThe corresponding temperature at which the kinetic energy of a classical 1D-particle is equal to E_1 , given by Eq. (1.1).

Particle in an infinite potential well of size $L_{\rm A}$

$$n\lambda_n/2 = L_A$$

Size effect: Recall the particle in a box from QM

Quantization and confinement in normal matter

$$\frac{1}{2m} \left(-i\hbar \nabla - e\boldsymbol{A} \right)^2 \psi + U\psi = E\psi$$

$$E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2 (2\pi/\lambda_n)^2}{2m} = \frac{\hbar^2 \pi^2}{2mL_A^2} n^2$$

Table 1.1 Confinement by the infinite potential well		
Confinement length L_A	Energy E_1	Temperature $T^{\rm \ a}$
1 Å 1 nm 1 μm	38 eV 0.38 eV 0.38 μeV	$\sim 4 \times 10^5 \text{ K}$ $\sim 4 \times 10^3 \text{ K}$ $\sim 4 \text{ mK}$

^aThe corresponding temperature at which the kinetic energy of a classical 1D-particle is equal to E_1 , given by Eq. (1.1).

Particle in an infinite potential well of size L_A

$$n\lambda_n/2 = L_A$$

Physical properties dominated by fermi electrons (spin ½ = Fermions). Fermions must have unique quantum numbers (they are **individual particles**). Wavefunction is determined by the number of particles.

 Ψ (fermi electrons in a cm³ metal) ~ Ψ (e_1 , e_2 , e_3 , ..., $e_{10^{23}}$)

Physical properties dominated by fermi electrons (spin ½ = Fermions). Fermions must have unique quantum numbers (they are **individual particles**). Wavefunction is determined by the number of particles.

 Ψ (fermi electrons in a cm³ metal) ~ Ψ (e_1 , e_2 , e_3 , ..., $e_{10^{23}}$)

Superconductors: Bosonic condensates

All particles live in a *single macroscopic state*

 $\Psi_{condensate}$ (~10²³ paired electrons / cm³) = Ψ (e_1 , e_2)

Physical properties dominated by fermi electrons (spin ½ = Fermions). Fermions must have unique quantum numbers (they are **individual particles**). Wavefunction is determined by the number of particles.

 Ψ (fermi electrons in a cm³ metal) ~ Ψ ($e_1,e_2,e_3,\ldots,e_{10^{23}}$)

Superconductors: Bosonic condensates

All particles live in a *single macroscopic state*

 $\Psi_{condensate}$ (~10²³ paired electrons / cm³) = Ψ (e_1 , e_2)

Don't think of it as a collection of individual pairs/particles: All paired electrons become a single macroscopic entity

Physical properties dominated by fermi electrons (spin $\frac{1}{2}$ = Fermions). Fermions must have unique quantum numbers (they are **individual particles**). Wavefunction is determined by the number of particles.

 Ψ (fermi electrons in a cm³ metal) ~ Ψ ($e_1, e_2, e_3, \dots, e_{10^{23}}$)

Superconductors: Bosonic condensates

All particles live in a single macro

condensa

Do all electrons in the material turn into Cooper pairs?? blection Don't think as a collection of individual pairs/particles:

All paired electrons become a single macroscopic entity

 e_5

 $\Psi(e_1, e_2)$

Pairing

 e_6

Normal (T>Tc)

Normal (T>Tc)

SC (T<Tc)

Going forward: Forget your fermionic physics Think like a bosonic condensate!

(Non-Fermi) electrons & holes still exist below the gap (or above the gap as exited electrons)

Normal (T>Tc)

SC (T<Tc)

(Non-Fermi) electrons & holes still exist below the gap (or above the gap as exited electrons)

Normal (T>Tc)

SC (T<Tc)

Going forward: Forget your fermionic physics Think like a bosonic condensate!

Schrödinger

$$\frac{1}{2m} \left(-i\hbar \nabla - e\mathbf{A} \right)^2 \psi + U\psi = E\psi$$

$$\Psi = |\Psi(\mathbf{r})|e^{i\varphi(r)}$$

Schrödinger

$$\frac{1}{2m} \left(-\imath \hbar \nabla - e \mathbf{A} \right)^2 \psi + U \psi = E \psi$$

$$\Psi = |\Psi(\mathbf{r})|e^{i\varphi(r)}$$

Ginzburg-Landau equations

$$\frac{1}{2m^{\star}}(-\imath\hbar\boldsymbol{\nabla}-e^{\star}\boldsymbol{A})^{2}\psi_{s}+\beta|\psi_{s}|^{2}\psi_{s}=-\alpha\psi_{s}$$

 $\nabla \times A$ (vector potential) = $\mu_0 h$ (magnetic field)

Schrödinger

$$\frac{1}{2m} \left(-i\hbar \nabla - e\boldsymbol{A} \right)^2 \psi + U\psi = E\psi$$

 $\nabla \times A$ (vector potential) = $\mu_0 h$ (magnetic field)

$$\Psi = |\Psi(\mathbf{r})|e^{i\varphi(r)}$$

2e

 $2m_e$

Ginzburg-Landau equations

$$\frac{1}{2m^{\star}}(-\imath\hbar\nabla - e^{\star}A)^{2}\psi_{s} + \beta|\psi_{s}|^{2}\psi_{s} = -\alpha\psi_{s} \begin{bmatrix} e^{*} = -\alpha\psi_{s} \\ m^{*} = -\alpha\psi_{s} \end{bmatrix}$$

$$-\alpha \leftrightarrow E$$

$$-\alpha = \frac{\hbar^2}{2m^{\star} \xi^2(T)}$$

$$\xi(T) = \frac{\xi(0)}{\sqrt{1 - \frac{T}{T_{c0}}}}$$

Schrödinger

$$\frac{1}{2m} \left(-i\hbar \nabla - e\boldsymbol{A} \right)^2 \psi + U\psi = E\psi$$

$$\Psi = |\Psi(\mathbf{r})|e^{i\varphi(r)}$$

2e

 $2m_{\rho}$

Ginzburg-Landau equations

$$\frac{1}{2m^{\star}}(-\imath\hbar\nabla - e^{\star}A)^{2}\psi_{s} + \beta|\psi_{s}|^{2}\psi_{s} = -\alpha\psi_{s} \begin{bmatrix} e^{*} = -\alpha\psi_{s} \\ m^{*} = -\alpha\psi_{s} \end{bmatrix}$$

$$-\alpha \leftrightarrow E$$

$$-\alpha = \frac{\hbar^2}{2m^{\star} \xi^2(T)}$$

$$\xi(T) = \frac{\xi(0)}{\sqrt{1 - \frac{T}{T_{c0}}}}$$

 $\nabla \times A$ (vector potential) = $\mu_0 h$ (magnetic field)

$$\boldsymbol{j} = \boldsymbol{\nabla} \times \boldsymbol{h} = \frac{e^{\star}}{2m^{\star}} \left[\psi_s^{\star} (-\imath \hbar \boldsymbol{\nabla} - e^{\star} \boldsymbol{A}) \psi_s + \psi_s (\imath \hbar \boldsymbol{\nabla} - e^{\star} \boldsymbol{A}) \psi_s^{\star} \right]$$

Boundary conditions: particle in a box vs confined SC

N/vacuum (Dirichlet boundary condition)

Density is zero at the boundary

MORE DETAIL IN MOSHCHALKOV

Boundary conditions: particle in a box vs confined SC

N/vacuum (Dirichlet boundary condition)

Density is zero at the boundary

SC/vacuum (Neumann boundary condition)

The normal component of the gradient of Ψ is zero (Supercurrent cannot flow outwards)

MORE DETAIL IN MOSHCHALKOV

Boundary conditions: Confined Superconductors

Where would the order parameter nucleate first?

Boundary conditions: Confined Superconductors

Where would the order parameter nucleate first?

Moshchalkov et al, Phys. Rev. Lett. 86, 7 (2001)

 $\Psi = |\Psi(\mathbf{r})|e^{i\varphi(\mathbf{r})}$

 $\Psi = |\Psi(\mathbf{r})|e^{i\varphi(\mathbf{r})}$

ξ : Coherence Length
"stiffness" of the amplitude
How rapidly does |Ψ|
(Cooper pair density) "bend"

in real space

 $\Psi = |\Psi(\mathbf{r})|e^{i\varphi(\mathbf{r})}$

ξ: Coherence Length
"stiffness" of the amplitude
How rapidly does |Ψ|
(Cooper pair density) "bend"
in real space

 λ : magnetic penetration depth (stiffness of the phase φ)

 λ : Characteristic decay length of magnetic fields inside a SC

What's the link between φ and screening of magnetic field?

 $\Psi = |\Psi(\mathbf{r})|e^{i\varphi(\mathbf{r})}$

ξ: Coherence Length
"stiffness" of the amplitude
How rapidly does |Ψ|
(Cooper pair density) "bend"
in real space

 λ : magnetic penetration depth (stiffness of the phase φ)

 λ : Characteristic decay length of magnetic fields inside a SC

What's the link between φ and screening of magnetic field?

 λ and ξ are <u>independent</u> material parameters.

 $\Psi = |\Psi(\mathbf{r})|e^{i\varphi(\mathbf{r})}$

ξ: Coherence Length
"stiffness" of the amplitude
How rapidly does |Ψ|
(Cooper pair density) "bend"
in real space

 λ : magnetic penetration depth (stiffness of the phase φ)

 λ : Characteristic decay length of magnetic fields inside a SC

What's the link between φ and screening of magnetic field?

 λ and ξ are <u>independent</u> material parameters.

What is the physical significance of λ /ξ? (see later)

Food for thought: Do superconductors always expel magnetic field?

True or false:

When an external magnetic field is applied to a SC, it induces a supercurrent, whose role is to cancel out the applied field.

Self study: Find out what happens to $\lambda \& \xi$ near T_c

End of Lecture 1

A lot of the material covered in this lecture can be found on Moshchalkov's book

Kaveh Lahabi (2025)

