Superconductivity Lecture 4:
Symmetries (continued)
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Allowed pairing symmetries (recap)

¥ (012 ; ; W12)

S-wave: Nb, Al, MoGe,...
d-wave: Cuprates (e.g. YBCO)

Singlet (odd)

SHe, UPt;

So far, only observed in S-F
hybrids (via proximity effect)




Time-reversal symmetry breaking (TRSB)



Spontaneous Time-reversal symmetry breaking (TRSB)

What does it mean?
Examples in nature?
Can TRSB happen in superconductors?

What pairing symmetry shows TRSB?




Detecting spontaneous TRSB in SCs (with no applied field)

Orbital (currents)




Detecting spontaneous TRSB in SCs (with no applied field)

zero-field uSR

Orbital (currents)

Muon spin

AL
— Sample

Muon detector 4

C. Mielke et al Nature (2022)



Detecting spontaneous TRSB in SCs (with no applied field)
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Famous example: Spontaneous TRSB in Sr,RuO,

Muon spin resonance (Luke et al, nature, 1998)
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Famous example: Spontaneous TRSB in Sr,RuO,

Muon spin resonance (Luke et al, nature, 1998) Polar Kerr effect (Xia et al, PRL, 2006)
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Famous example: Spontaneous TRSB in Sr,RuO,

Muon spin resonance (Luke et al, nature, 1998) Polar Kerr o< q




What kind of pairing symmetry results in
spontaneous TRSB?
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Understanding symmetries by visualizing them
Singlet states

S-wave d-wave
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A is k-dependent

0
0
s constant Magnitude and phase of A varies in
(real and k) space

L
o
Al



Understanding symmetries by visualizing them

Singlet states
S-wave d-wave

CH(-)

A is k-dependent

0
0
is constant Magnitude and phase of A varies in
(real and k) space

L
o
A

Hybrid gaps (e.g., Chiral d-wave)

Gap can be isotropic, despite being d-wave
Can have a net orbital angular momentum

Chirality - phase winding has a directions



Understanding symmetries by visualizing them
Singlet states

S-wave d-wave Hybrid gaps (e.g., Chiral d-wave)

L=0 A is k-dependent Gap can be isotropic, despite being d-wave
=0 .

Zis constant Magnitude and phase of A varies in Can have a net orbital angular momentum

(real and k) space Chirality = phase winding has a directions

Triplet states:
3 independent vectors describe the spin symmetry of A(k)
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The elegance of d~vector formalism: One vector to rule them all

For a given quantization direction, A;; and A|| represent spin projections of +1 and
—1, respectively, while Ay = Aj1 = Ag corresponds to triplet pairing with zero spin
projection (i.e. Cooper pairs do have a spin S = 1, but it lies perpendicular to the
quantization axis). This gap matrix can be elegantly reduced to a three-dimensional

complex vector d(k) = [d(k),d,(k),d. (k)] (known as the d-vector), defined by

~d (k) +id, (k) d, (k)
d,(k) dy(k)+id,(k)

A state is called unitary if |d(k.) xd* (k.)| = 0. In this case, d(k) has a straightforward

meaning: its amplitude is proportional to size of the gap at (k, —k); and its direction is
icular to the plane of equal-spin paired electrons, where |1 1) and |} |) can be

defined with respect to any quantization direction in that plane. For instance,
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The (famous) chiral p-wave pairing symmetry

d(k)=2A,(k,  ik,)

Al direction
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The (famous) chiral p-wave pairing symmetry

d(k)=2A,(k,  ik,)

Al direction TRS

ks + k3, d|ab  preserved
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The (famous) chiral p-wave pairing symmetry

d(k)=iA,(k, £ ik)) What's causing the TRSB?
- (spin or orbital angular momentum?)

Al direction TRS

ks + k3, d|ab  preserved

ki+k3  dl|ab  preserved
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Why don't the other states break TRS?

d-vector AVIAY, direction TRS
Xky +Yky (k3 K5 d|ab  preserved
Xky—¥ky (ki k5 d| ab  preserved

Xky—yk, ki+kj dlab  preserved

xky +yky N kJZ, d| ab preserved

zky | kx| d| c preserved

z(ky + ky) |kx + lcy| d| c preserved

2y xiky) \[kz+k5 d| c broken

See Mackenzie, Maeno, REVIEWS OF MODERN PHYSICS 75 (2003), or Kaveh’s PhD thesis for more examples



Why don't the other states break TRS?

What's happening to the Cooper pair spin?
(Is there a net spin to break TRS?)

d-vector AVIAY, direction TRS _
What about the orbital part?

Xk + ¥k, ki+ks  dl|ab  preserved (is there a net L?)
xky — Yk ks + ks d| ab  preserved
Xky—yk, k2 d| ab  preserved

xky +yky k2 + kJZ, d| ab preserved

zky | kx| d| c preserved

z(ky + ky) |kx + lcy| d| c preserved

2(ky +iky) ks + k5 d| c broken

See Mackenzie, Maeno, REVIEWS OF MODERN PHYSICS 75 (2003), or Kaveh’s PhD thesis for more examples



Why don't the other states break TRS?

What's happening to the Cooper pair spin?
(Is there a net spin to break TRS?)

d-vector AVIAY, direction TRS _
What about the orbital part?

Rky + 9k, ki+ky  dlab  preserved EEIETIPIOSEE PRI

1l "
2k, = Ei[(kx+ik}..r)+(kx—fk3,-'3

\-—-v—-/

xky — Yk ks + ks d| ab  preserved L——1

Xky—yk, k2 d| ab  preserved

xky +yky k2 + kJZ, d| ab preserved

zky | kx| d| c preserved

z(ky + ky) |kx + lcy| d| c preserved

2(ky +iky) ks + k5 d| c broken

See Mackenzie, Maeno, REVIEWS OF MODERN PHYSICS 75 (2003), or Kaveh’s PhD thesis for more examples



Why don't the other states break TRS?
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Why don't the other states break TRS?

d-vector AVIAY,

direction

TRS
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What's happening to the Cooper pair spin?
(Is there a net spin to break TRS?)

What about the orbital part?
(is there a net L?)
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See Mackenzie, Maeno, REVIEWS OF MODERN PHYSICS 75 (2003), or Kaveh’s PhD thesis for more examples



Why don’t the other states break TRS?

What's happening to the Cooper pair spin?
(Is there a net spin to break TRS?)

d-vector AVIAY, direction TRS _
What about the orbital part?
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More examples: TRSB or no TRSB?
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More examples: TRSB or no TRSB?
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More examples: TRSB or no TRSB?
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Allowed pairing symmetries

¥ (012 ; ; W12)

S-wave: Nb, Al, MoGe,...
d-wave: Cuprates (e.g. YBCO)

Singlet (odd)

SHe, UPt;

So far, only observed in S-F
hybrids (via proximity effect)
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S N
hD,
_ N 1) 141
i P
&N
PkT
S F
) hD; ) ITLy—IL1) T
F= g, M
ITLY+LT) s

— Decoherence due to the exchange field
. of ferromagnet: Short range proximity




S-F Proximity Effect: FFLO state (Cooper pairs with finite momentum)

S
ITL)—ILT)

ITL+ILT) ?

Q = 2Eex/ (Hvy)

ka Zkf+Q/2

1Also known as the LOFF staﬂe, it is named after Peter Fulde and Richard Ferrell [3], and Anatoly Larkin
and Yurii Ovchinnikov [4], who independently proposed the idea in connection with the coexistence
problem of superconductivity with ferromagnetism.
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S-F Proximity Effect: FFLO state (Cooper pairs with finite momentum)
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S-F Proximity Effect: FFLO state (Cooper pairs with finite momentum)
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S-F Proximity Effect: FFLO state (Cooper pairs with finite momentum)
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Long-range SF proximity: Spin-polarized Cooper pairs
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Long-range SF proximity: Spin-polarized Cooper pairs Spin-mixing
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Long-range SF proximity: Spin-polarized Cooper pairs
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Break?



Superconducting (dissipation-less) spintronics:

supercurrent off supercurrent on



Josephson junctions with non-collinear F layers

Device configuration (concept) Actual devices
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Josephson junctions with non-collinear F layers

Device configuration (concept) Actual devices
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Decoupling the magnetic layers
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Decoupling the magnetic layers
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Decoupling the magnetic layers
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Decoupling the magnetic layers
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Let's simulate the magnetic layers

&




Let’'s simulate the magnetic layers

Co

F layers have antiparallel magnetization.

Why is this energetically favorable?
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Nanostructured by *Ga focused ion beam




Nanostructured by *Ga focused ion beam
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More on Josephson junctions next time



REVIEWS OF MODERN PHYSICS, VOLUME 75, APRIL 2003

The superconductivity of Sr,RuO, and the physics of spin-triplet
End of Lecture 4 o

Andrew Peter Mackenzie

School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews,
Fife KY16 9SS, Scotland

Yoshiteru Maeno

Department of Physics, Kyoto University, Kyoto 606-8502, Japan
and International Innovation Center, Kyoto University, Kyoto 606-8501, Japan

A lot of the material covered here can be found in
1. 2003 review by Mackenzie & Maeno
2. Kaveh Lahabi’s PhD thesis: Chapter 2 &3 (scan the QR)

Kaveh Lahabi (2025)

Chapter 2 Chapter 3
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