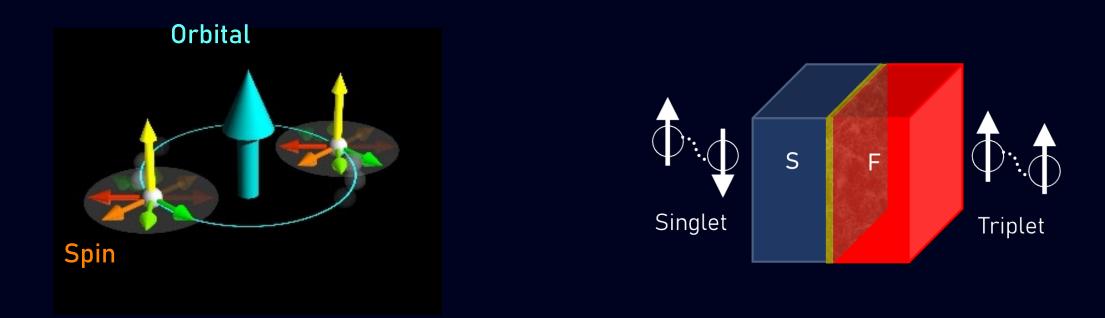
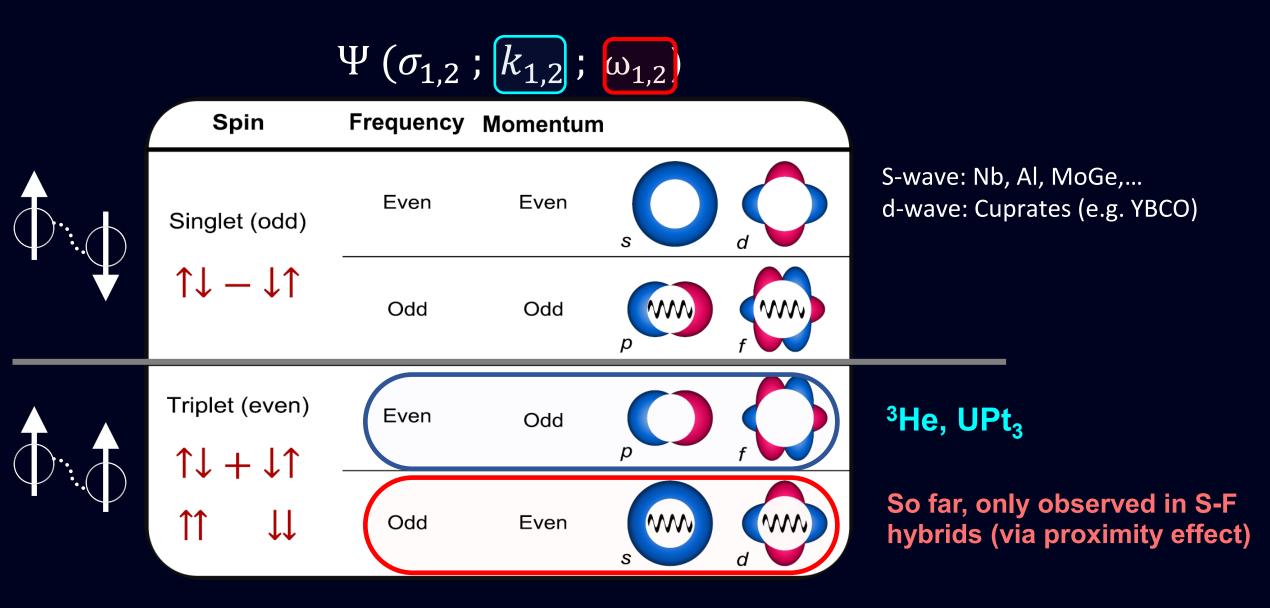
Superconductivity Lecture 4: Symmetries (continued)



Kaveh Lahabi (2025)

Allowed pairing symmetries (recap)



Time-reversal symmetry breaking (TRSB)

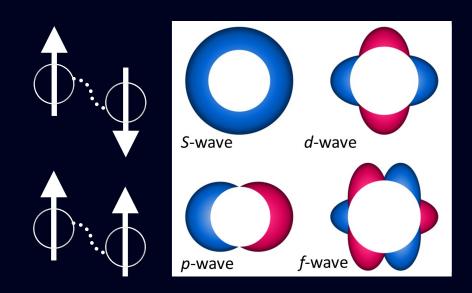
Spontaneous Time-reversal symmetry breaking (TRSB)

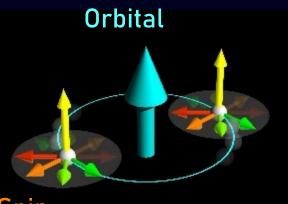
What does it mean?

Examples in nature?

Can TRSB happen in superconductors?

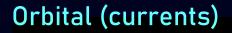
What pairing symmetry shows TRSB?

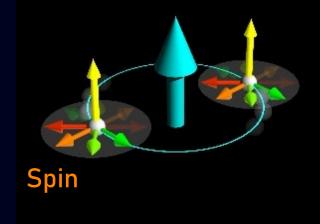




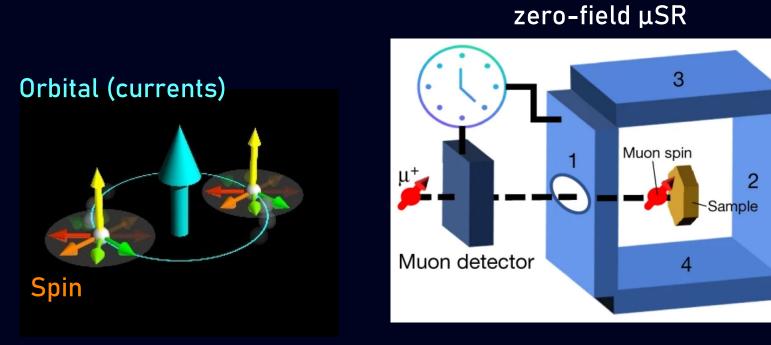
Spin

Detecting spontaneous TRSB in SCs (with no applied field)



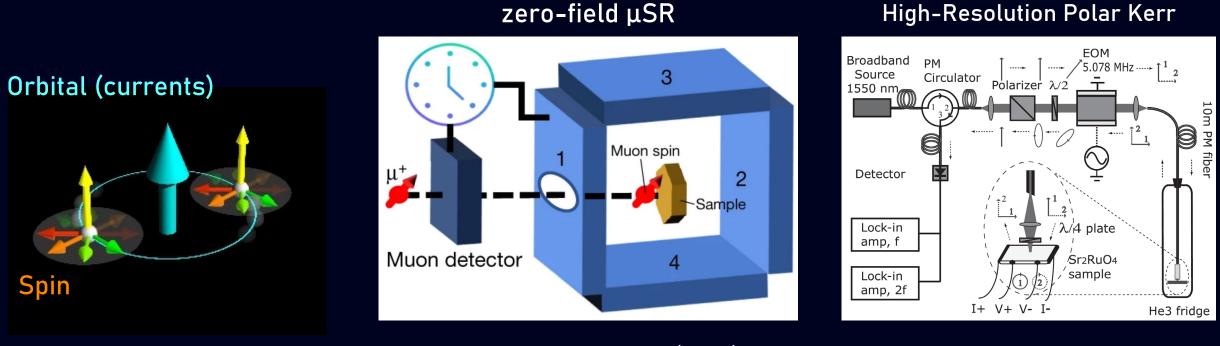


Detecting spontaneous TRSB in SCs (with no applied field)



C. Mielke et al Nature (2022)

Detecting spontaneous TRSB in SCs (with no applied field)

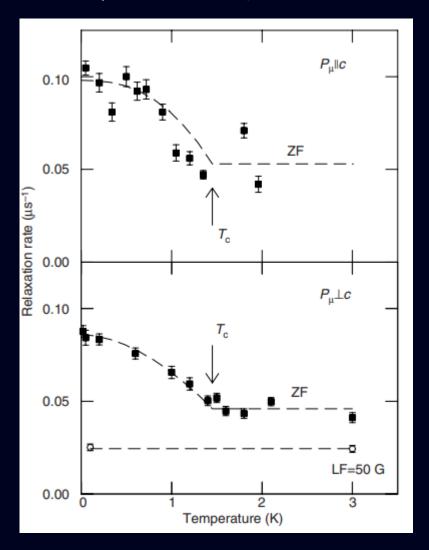


C. Mielke et al Nature (2022)

Kapitulnik et al PRL (2003)

Famous example: Spontaneous TRSB in Sr₂RuO₄

Muon spin resonance (Luke et al, nature, 1998)

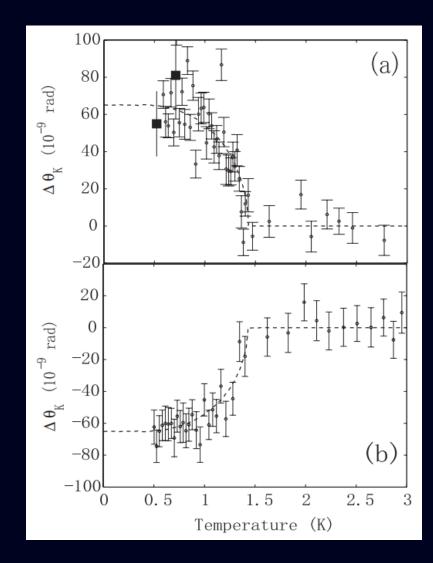


Famous example: Spontaneous TRSB in Sr₂RuO₄

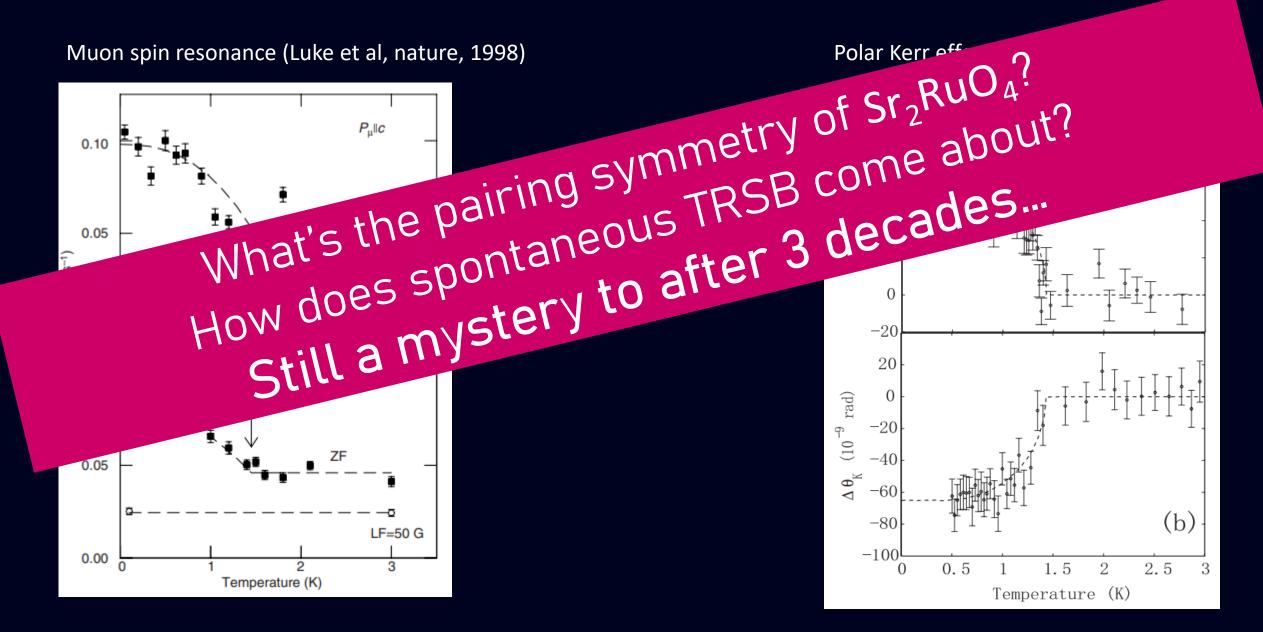
$P_{u} \| c$ 0.10 ZF 0.05 Relaxation rate (µs⁻¹) 0.0 0 $P_{\rm u} \perp c$ 0.05 LF=50 G 0.00 0 2 з Temperature (K)

Muon spin resonance (Luke et al, nature, 1998)

Polar Kerr effect (Xia et al, PRL, 2006)



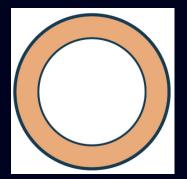
Famous example: Spontaneous TRSB in Sr₂RuO₄



What kind of pairing symmetry results in spontaneous TRSB?

Singlet states

S-wave



L = 0 σ = 0 Δ is constant Understanding symmetries by visualizing them

Understanding symmetries by visualizing them

Singlet states

S-wave

d-wave

L = 0 σ = 0 Δ is constant

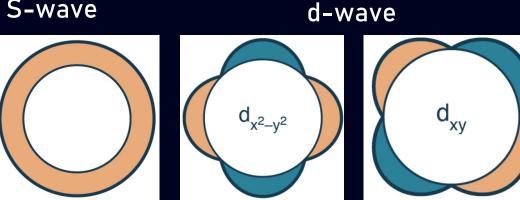
Δ is k-dependent

Magnitude and phase of Δ varies in (real and k) space

Understanding symmetries by visualizing them

Singlet states

S-wave

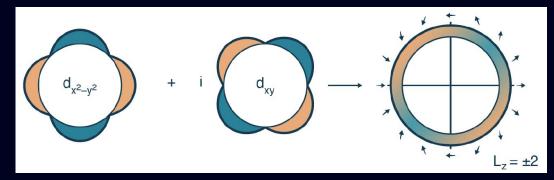


L = 0 σ = 0 Δ is constant

Δ is k-dependent

Magnitude and phase of Δ varies in (real and k) space

Hybrid gaps (e.g., Chiral d-wave)

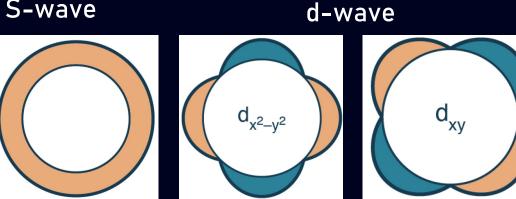


Gap can be isotropic, despite being d-wave Can have a net orbital angular momentum Chirality \rightarrow phase winding has a directions

Understanding symmetries by visualizing them

Singlet states

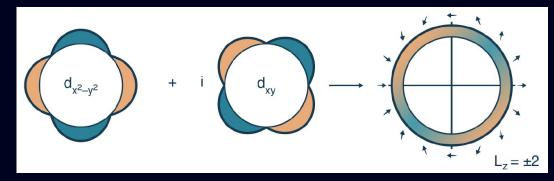
S-wave



L = 0 $\sigma = 0$ Δ is constant

 Δ is k-dependent Magnitude and phase of Δ varies in (real and k) space

Hybrid gaps (e.g., Chiral d-wave)



Gap can be isotropic, despite being d-wave Can have a net orbital angular momentum Chirality \rightarrow phase winding has a directions

Triplet states: 3 independent vectors describe the spin symmetry of $\Delta(k)$

$$\Delta(\mathbf{k}) = \begin{pmatrix} \Delta_{\mathbf{k},\uparrow\uparrow} & \Delta_{\mathbf{k},0} \\ \Delta_{\mathbf{k},0} & \Delta_{\mathbf{k},\downarrow\downarrow} \end{pmatrix}$$

$$\begin{array}{ccc} \Delta_{\uparrow\uparrow} & |\uparrow\uparrow\rangle & m_z = +1 \\ \Delta_{\uparrow\downarrow} = \Delta_{\downarrow\uparrow} = \Delta_0 & |\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle & m_z = 0 \\ \Delta_{\downarrow\downarrow} & |\downarrow\downarrow\rangle & m_z = -1 \end{array} \begin{array}{c} z \\ m_z = -1 \end{array}$$

For a given quantization direction, $\Delta_{\uparrow\uparrow}$ and $\Delta_{\downarrow\downarrow}$ represent spin projections of +1 and -1, respectively, while $\Delta_{\uparrow\downarrow} = \Delta_{\downarrow\uparrow} = \Delta_0$ corresponds to triplet pairing with zero spin projection (i.e. Cooper pairs do have a spin *S* = 1, but it lies perpendicular to the quantization axis). This gap matrix can be elegantly reduced to a three-dimensional complex vector $\boldsymbol{d}(\boldsymbol{k}) = [d_x(\boldsymbol{k}), d_y(\boldsymbol{k}), d_z(\boldsymbol{k})]$ (known as the *d*-vector), defined by

$$\begin{pmatrix} \Delta_{\boldsymbol{k},\uparrow\uparrow} & \Delta_{\boldsymbol{k},0} \\ \Delta_{\boldsymbol{k},0} & \Delta_{\boldsymbol{k},\downarrow\downarrow} \end{pmatrix} = \begin{pmatrix} -d_x(\boldsymbol{k}) + id_y(\boldsymbol{k}) & d_z(\boldsymbol{k}) \\ d_z(\boldsymbol{k}) & d_x(\boldsymbol{k}) + id_y(\boldsymbol{k}) \end{pmatrix}$$

For a given quantization direction, $\Delta_{\uparrow\uparrow}$ and $\Delta_{\downarrow\downarrow}$ represent spin projections of +1 and -1, respectively, while $\Delta_{\uparrow\downarrow} = \Delta_{\downarrow\uparrow} = \Delta_0$ corresponds to triplet pairing with zero spin projection (i.e. Cooper pairs do have a spin *S* = 1, but it lies perpendicular to the quantization axis). This gap matrix can be elegantly reduced to a three-dimensional complex vector $\boldsymbol{d}(\boldsymbol{k}) = [d_x(\boldsymbol{k}), d_y(\boldsymbol{k}), d_z(\boldsymbol{k})]$ (known as the *d*-vector), defined by

$$\begin{pmatrix} \Delta_{\boldsymbol{k},\uparrow\uparrow} & \Delta_{\boldsymbol{k},0} \\ \Delta_{\boldsymbol{k},0} & \Delta_{\boldsymbol{k},\downarrow\downarrow} \end{pmatrix} = \begin{pmatrix} -d_x(\boldsymbol{k}) + id_y(\boldsymbol{k}) & d_z(\boldsymbol{k}) \\ d_z(\boldsymbol{k}) & d_x(\boldsymbol{k}) + id_y(\boldsymbol{k}) \end{pmatrix}$$

$$\boldsymbol{d}(\boldsymbol{k}) = [0, 0, d_z(\boldsymbol{k})] \parallel \hat{\mathbf{z}}$$

For a given quantization direction, $\Delta_{\uparrow\uparrow}$ and $\Delta_{\downarrow\downarrow}$ represent spin projections of +1 and -1, respectively, while $\Delta_{\uparrow\downarrow} = \Delta_{\downarrow\uparrow} = \Delta_0$ corresponds to triplet pairing with zero spin projection (i.e. Cooper pairs do have a spin *S* = 1, but it lies perpendicular to the quantization axis). This gap matrix can be elegantly reduced to a three-dimensional complex vector $\boldsymbol{d}(\boldsymbol{k}) = [d_x(\boldsymbol{k}), d_y(\boldsymbol{k}), d_z(\boldsymbol{k})]$ (known as the *d*-vector), defined by

$$\begin{pmatrix} \Delta_{\boldsymbol{k},\uparrow\uparrow} & \Delta_{\boldsymbol{k},0} \\ \Delta_{\boldsymbol{k},0} & \Delta_{\boldsymbol{k},\downarrow\downarrow} \end{pmatrix} = \begin{pmatrix} -d_x(\boldsymbol{k}) + id_y(\boldsymbol{k}) & d_z(\boldsymbol{k}) \\ d_z(\boldsymbol{k}) & d_x(\boldsymbol{k}) + id_y(\boldsymbol{k}) \end{pmatrix}$$

$$\boldsymbol{d}(\boldsymbol{k}) = [0, 0, d_z(\boldsymbol{k})] \parallel \hat{\boldsymbol{z}}$$

$$\Delta_{\uparrow\uparrow z} = \Delta_{\downarrow\downarrow z} = 0$$

For a given quantization direction, $\Delta_{\uparrow\uparrow}$ and $\Delta_{\downarrow\downarrow}$ represent spin projections of +1 and -1, respectively, while $\Delta_{\uparrow\downarrow} = \Delta_{\downarrow\uparrow} = \Delta_0$ corresponds to triplet pairing with zero spin projection (i.e. Cooper pairs do have a spin *S* = 1, but it lies perpendicular to the quantization axis). This gap matrix can be elegantly reduced to a three-dimensional complex vector $\boldsymbol{d}(\boldsymbol{k}) = [d_x(\boldsymbol{k}), d_y(\boldsymbol{k}), d_z(\boldsymbol{k})]$ (known as the *d*-vector), defined by

$$\begin{pmatrix} \Delta_{\boldsymbol{k},\uparrow\uparrow} & \Delta_{\boldsymbol{k},0} \\ \Delta_{\boldsymbol{k},0} & \Delta_{\boldsymbol{k},\downarrow\downarrow} \end{pmatrix} = \begin{pmatrix} -d_x(\boldsymbol{k}) + id_y(\boldsymbol{k}) & d_z(\boldsymbol{k}) \\ d_z(\boldsymbol{k}) & d_x(\boldsymbol{k}) + id_y(\boldsymbol{k}) \end{pmatrix}$$

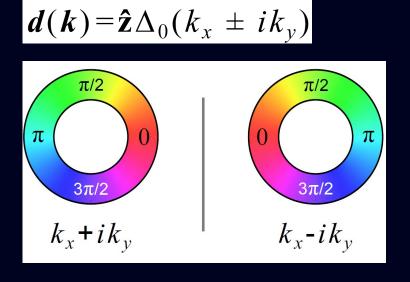
$$\boldsymbol{d}(\boldsymbol{k}) = [0, 0, d_z(\boldsymbol{k})] \parallel \hat{\boldsymbol{z}}$$

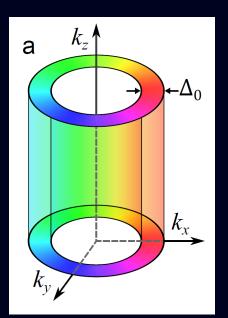
$$\Delta_{\uparrow\uparrow z} = \Delta_{\downarrow\downarrow z} = 0$$

<i>d</i> -vector	Δ / Δ_0	direction	TRS
$\hat{\mathbf{x}}k_x + \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	d ab	preserved
$\hat{\mathbf{x}}k_y - \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	d ab	preserved
$\hat{\mathbf{x}}k_x - \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{x}}k_y + \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{z}}k_{x}$	$ k_x $	$d \parallel c$	preserved
$\hat{\mathbf{z}}(k_x + k_y)$	$\left k_{x}+k_{y}\right $	$d \parallel c$	preserved
$\hat{\mathbf{z}}(k_x \pm i k_y)$	$\sqrt{k_x^2 + k_y^2}$	$d \parallel c$	broken

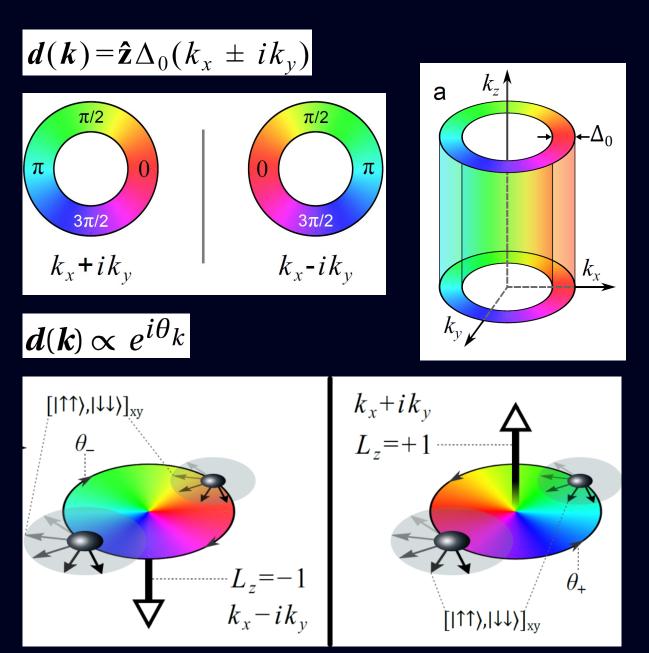
$$\boldsymbol{d}(\boldsymbol{k}) = \hat{\boldsymbol{z}} \Delta_0 (k_x \pm i k_y)$$

<i>d</i> -vector	Δ/Δ_0	direction	TRS
$\hat{\mathbf{x}}k_x + \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	d ab	preserved
$\hat{\mathbf{x}}k_y - \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \parallel ab$	preserved
$\hat{\mathbf{x}}k_x - \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{x}}k_y + \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{z}}k_{x}$	$ k_x $	$d \parallel c$	preserved
$\hat{\mathbf{z}}(k_x + k_y)$	$ k_x + k_y $	$d \parallel c$	preserved
$\hat{\mathbf{z}}(k_x \pm i k_y)$	$\sqrt{k_x^2 + k_y^2}$	d c	broken

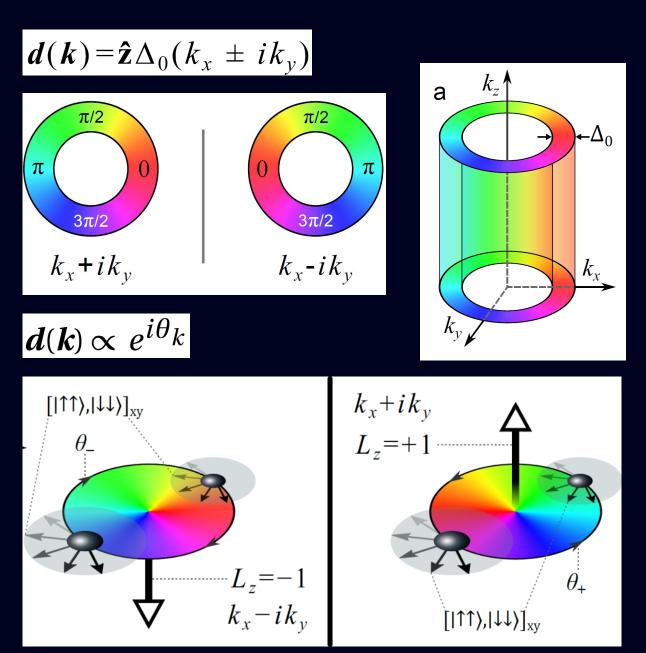




<i>d</i> -vector	Δ/Δ_0	direction	TRS
$\hat{\mathbf{x}}k_x + \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	d ab	preserved
$\hat{\mathbf{x}}k_y - \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{x}}k_x - \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{x}}k_y + \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{z}}k_{x}$	$ k_x $	$d \parallel c$	preserved
$\hat{\mathbf{z}}(k_x + k_y)$	$\left k_{x}+k_{y}\right $	$d \parallel c$	preserved
$\hat{\mathbf{z}}(k_x \pm i k_y)$	$\sqrt{k_x^2 + k_y^2}$	d c	broken



<i>d</i> -vector	Δ/Δ_0	direction	TRS	
$\hat{\mathbf{x}}k_x + \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	$d \parallel ab$	preserved	
$\hat{\mathbf{x}}k_y - \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved	
$\hat{\mathbf{x}}k_x - \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved	
$\hat{\mathbf{x}}k_y + \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved	
$\hat{\mathbf{z}}k_x$	$ k_x $	$d \parallel c$	preserved	
$\hat{\mathbf{z}}(k_x + k_y)$	$ k_x + k_y $	$d \parallel c$	preserved	
$\hat{\mathbf{z}}(k_x \pm i k_y)$	$\sqrt{k_x^2 + k_y^2}$	d c	broken	



What's causing the TRSB? (spin or orbital angular momentum?)

<i>d</i> -vector	Δ/Δ_0	direction	TRS
$\hat{\mathbf{x}}k_x + \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\mathbf{\hat{x}}k_{y} - \mathbf{\hat{y}}k_{x}$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{x}}k_x - \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{x}}k_y + \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{z}}k_{x}$	$ k_x $	$d \parallel c$	preserved
$\hat{\mathbf{z}}(k_x + k_y)$	$\left k_{x}+k_{y}\right $	$d \parallel c$	preserved
$\hat{\mathbf{z}}(k_x \pm i k_y)$	$\sqrt{k_x^2 + k_y^2}$	d c	broken

<i>d</i> -vector	Δ/Δ_0	direction	TRS
$\hat{\mathbf{x}}k_x + \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{x}}k_y - \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{x}}k_x - \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	$d \parallel ab$	preserved
$\hat{\mathbf{x}}k_y + \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{z}}k_x$	$ k_x $	$d \parallel c$	preserved
$\hat{\mathbf{z}}(k_x + k_y)$	$\left k_{x}+k_{y}\right $	d c	preserved
$\hat{\mathbf{z}}(k_x \pm i k_y)$	$\sqrt{k_x^2 + k_y^2}$	$d \parallel c$	broken

<i>d</i> -vector	Δ/Δ_0	direction	TRS
$\hat{\mathbf{x}}k_x + \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	d ab	preserved
$\hat{\mathbf{x}}k_y - \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \parallel ab$	preserved
$\hat{\mathbf{x}}k_x - \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{x}}k_y + \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{z}}k_x$	$ k_x $	d c	preserved
$\hat{\mathbf{z}}(k_x + k_y)$	$\left k_{x}+k_{y}\right $	$d \parallel c$	preserved
$\hat{\mathbf{z}}(k_x \pm i k_y)$	$\sqrt{k_x^2 + k_y^2}$	$d \parallel c$	broken

What's happening to the Cooper pair spin? (Is there a net spin to break TRS?)

What about the orbital part? (is there a net L?)

<i>d</i> -vector	Δ/Δ_0	direction	TRS
$\hat{\mathbf{x}}k_x + \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	d ab	preserved
$\hat{\mathbf{x}}k_y - \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \parallel ab$	preserved
$\hat{\mathbf{x}}k_x - \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{x}}k_y + \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \parallel ab$	preserved
$\hat{\mathbf{z}}k_x$	$ k_x $	d c	preserved
$\hat{\mathbf{z}}(k_x + k_y)$	$\left k_{x}+k_{y}\right $	d c	preserved
$\hat{\mathbf{z}}(k_x \pm i k_y)$	$\sqrt{k_x^2 + k_y^2}$	$d \parallel c$	broken

What's happening to the Cooper pair spin? (Is there a net spin to break TRS?)

What about the orbital part? (is there a net L?)

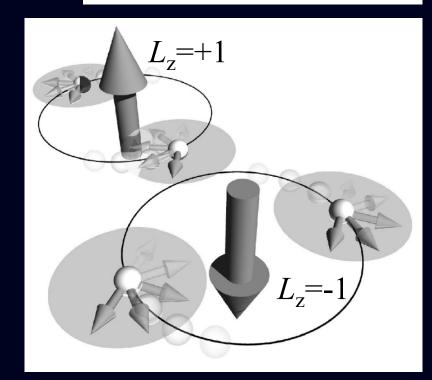
$$\hat{\mathbf{z}}k_x = \frac{1}{2}\hat{\mathbf{z}}\left[\underbrace{(k_x+ik_y)}_{L_z=-1} + \underbrace{(k_x-ik_y)}_{L_z=-1}\right]$$

<i>d</i> -vector	Δ/Δ_0	direction	TRS
$\hat{\mathbf{x}}k_x + \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	d ab	preserved
$\hat{\mathbf{x}}k_y - \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \parallel ab$	preserved
$\hat{\mathbf{x}}k_x - \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	$d \parallel ab$	preserved
$\hat{\mathbf{x}}k_y + \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \parallel ab$	preserved
$\hat{\mathbf{z}}k_x$	$ k_x $	d c	preserved
$\hat{\mathbf{z}}(k_x + k_y)$	$\left k_{x}+k_{y}\right $	$d \parallel c$	preserved
$\hat{\mathbf{z}}(k_x \pm i k_y)$	$\sqrt{k_x^2 + k_y^2}$	d c	broken

What's happening to the Cooper pair spin? (Is there a net spin to break TRS?)

What about the orbital part? (is there a net L?)

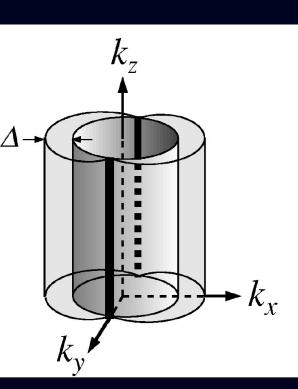
$$\hat{\mathbf{z}}k_x = \frac{1}{2}\hat{\mathbf{z}}\Big[\underbrace{(k_x+ik_y)}_{L_z=-1} + \underbrace{(k_x-ik_y)}_{L_z=-1}\Big]$$

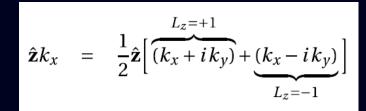


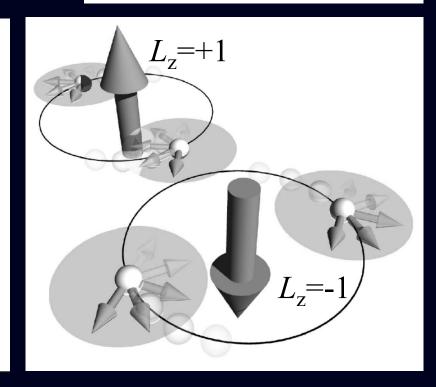
<i>d</i> -vector	Δ/Δ_0	direction	TRS
$\hat{\mathbf{x}}k_x + \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	$d \parallel ab$	preserved
$\hat{\mathbf{x}}k_y - \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \parallel ab$	preserved
$\hat{\mathbf{x}}k_x - \hat{\mathbf{y}}k_y$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{x}}k_y + \hat{\mathbf{y}}k_x$	$\sqrt{k_x^2 + k_y^2}$	$d \ ab$	preserved
$\hat{\mathbf{z}}k_x$	$ k_x $	$d \parallel c$	preserved
$\hat{\mathbf{z}}(k_x + k_y)$	$\left k_{x}+k_{y}\right $	$d \parallel c$	preserved
$\hat{\mathbf{z}}(k_x \pm i k_y)$	$\sqrt{k_x^2 + k_y^2}$	$d \parallel c$	broken

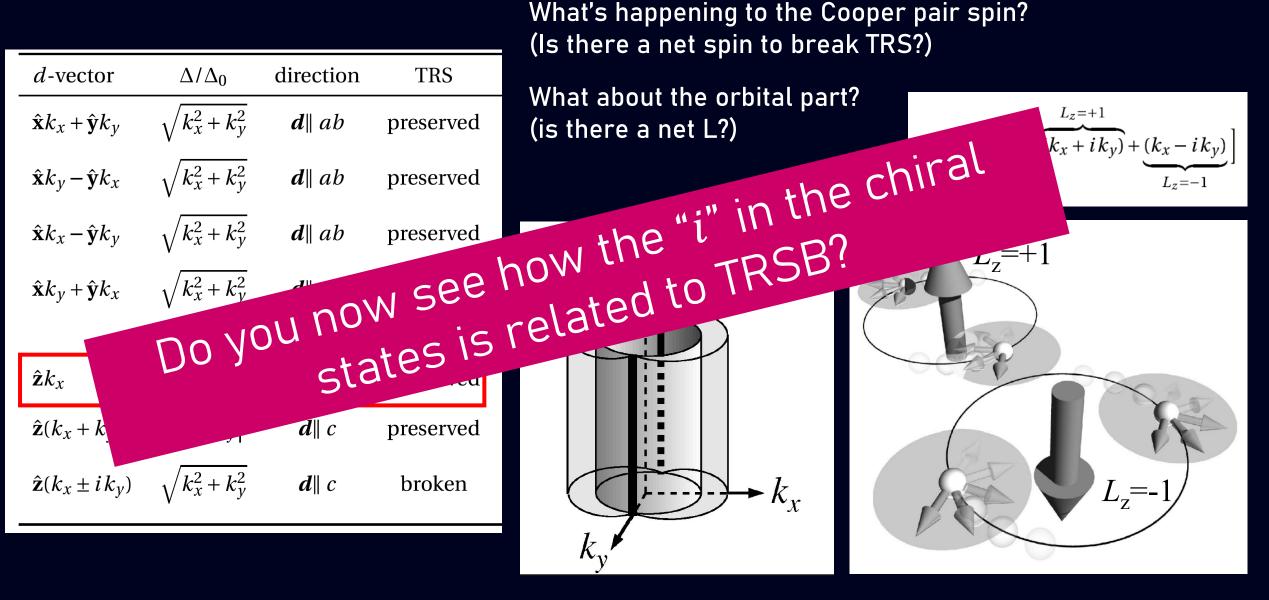
What's happening to the Cooper pair spin? (Is there a net spin to break TRS?)

What about the orbital part? (is there a net L?)



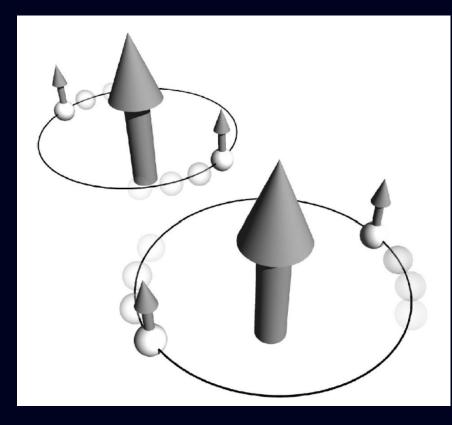






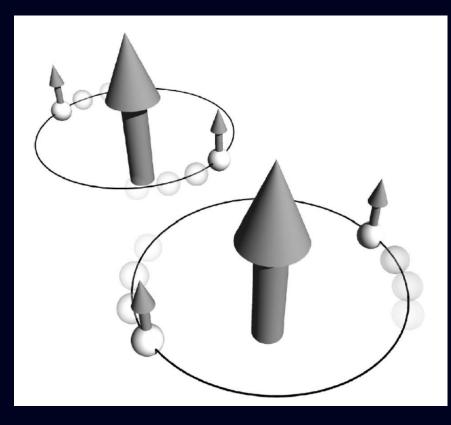
$$\mathbf{d} = \Delta_0 / 2(\hat{\mathbf{x}} + i\hat{\mathbf{y}})(k_x + ik_y)$$

$$\mathbf{d} = \Delta_0 / 2(\hat{\mathbf{x}} + i\hat{\mathbf{y}})(k_x + ik_y)$$

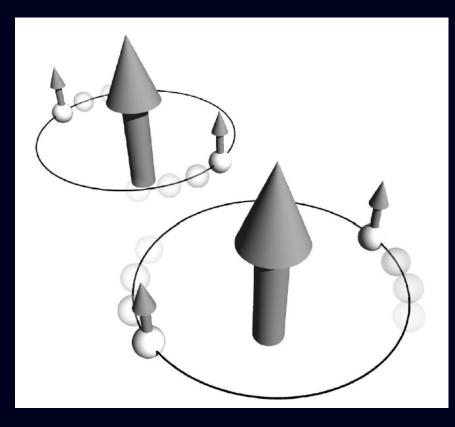


$$\mathbf{d} = \Delta_0(\mathbf{\hat{x}}k_x + \mathbf{\hat{y}}k_y)$$

$$\mathbf{d} = \Delta_0 / 2(\mathbf{\hat{x}} + i\mathbf{\hat{y}})(k_x + ik_y)$$

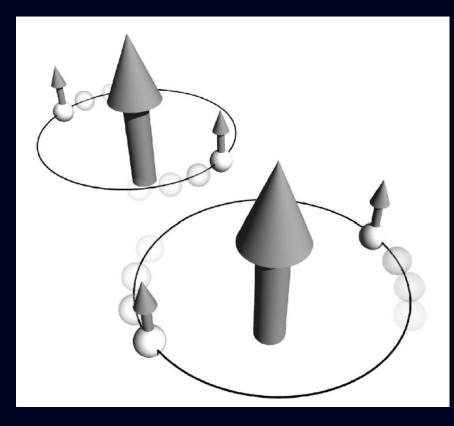


$$\mathbf{d} = \Delta_0 / 2(\mathbf{\hat{x}} + i\mathbf{\hat{y}})(k_x + ik_y)$$

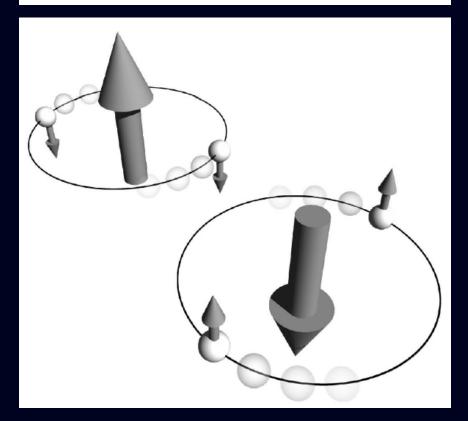


$$\mathbf{d} = \Delta_0 (\mathbf{\hat{x}} k_x + \mathbf{\hat{y}} k_y)$$
$$\hat{\mathbf{x}} k_x + \mathbf{\hat{y}} k_y = \frac{1}{2} \begin{bmatrix} \underbrace{(\mathbf{\hat{x}} + i\mathbf{\hat{y}})}_{L_z = -1} & \underbrace{(\mathbf{\hat{x}} - i\mathbf{k}_y)}_{L_z = -1} & \underbrace{(\mathbf{\hat{x}} - i\mathbf{\hat{y}})}_{L_z = +1} & \underbrace{(\mathbf{\hat$$

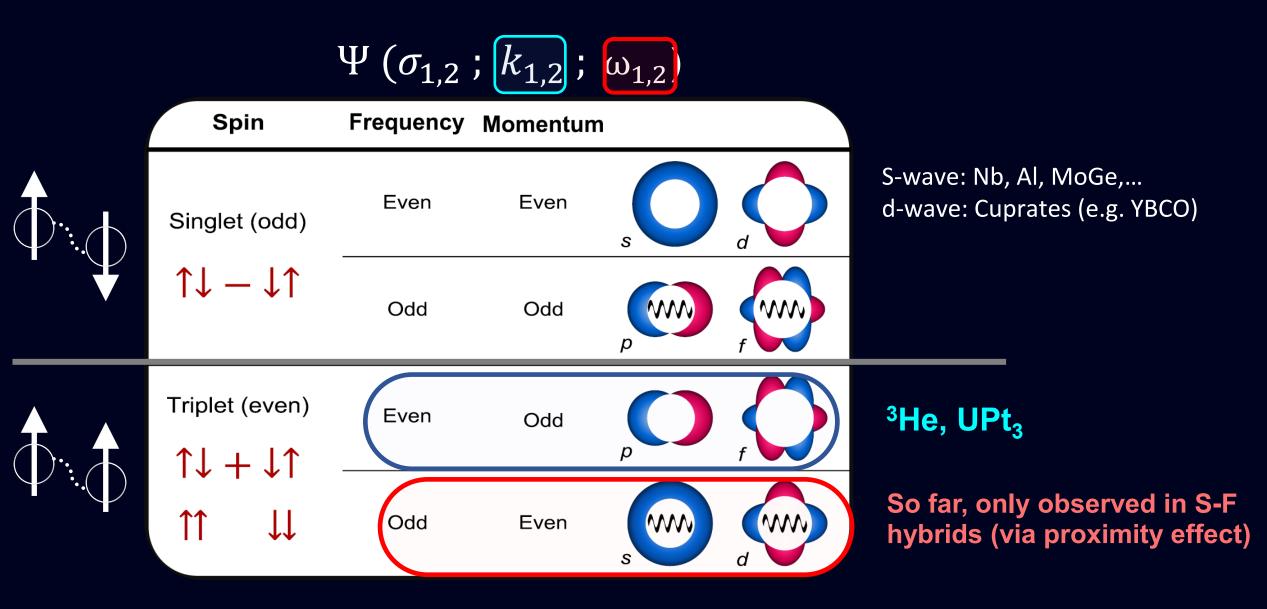
$$\mathbf{d} = \Delta_0 / 2(\mathbf{\hat{x}} + i\mathbf{\hat{y}})(k_x + ik_y)$$



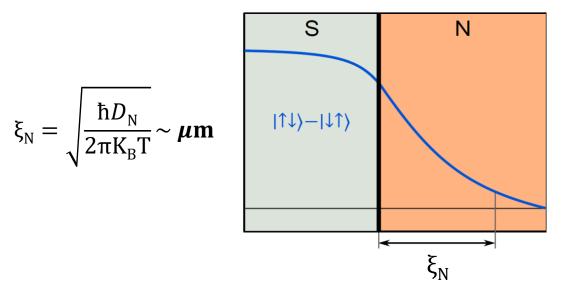
$$\mathbf{d} = \Delta_0 (\mathbf{\hat{x}} k_x + \mathbf{\hat{y}} k_y)$$
$$\hat{\mathbf{x}} k_x + \hat{\mathbf{y}} k_y = \frac{1}{2} \begin{bmatrix} \underbrace{s_z = +1} \\ (\mathbf{\hat{x}} + i\mathbf{\hat{y}}) \underbrace{k_x - ik_y} \\ L_z = -1 \end{bmatrix} + \underbrace{s_z = -1} \underbrace{s_z = -1} \\ \underbrace{k_x + ik_y} \\ L_z = +1 \end{bmatrix}$$



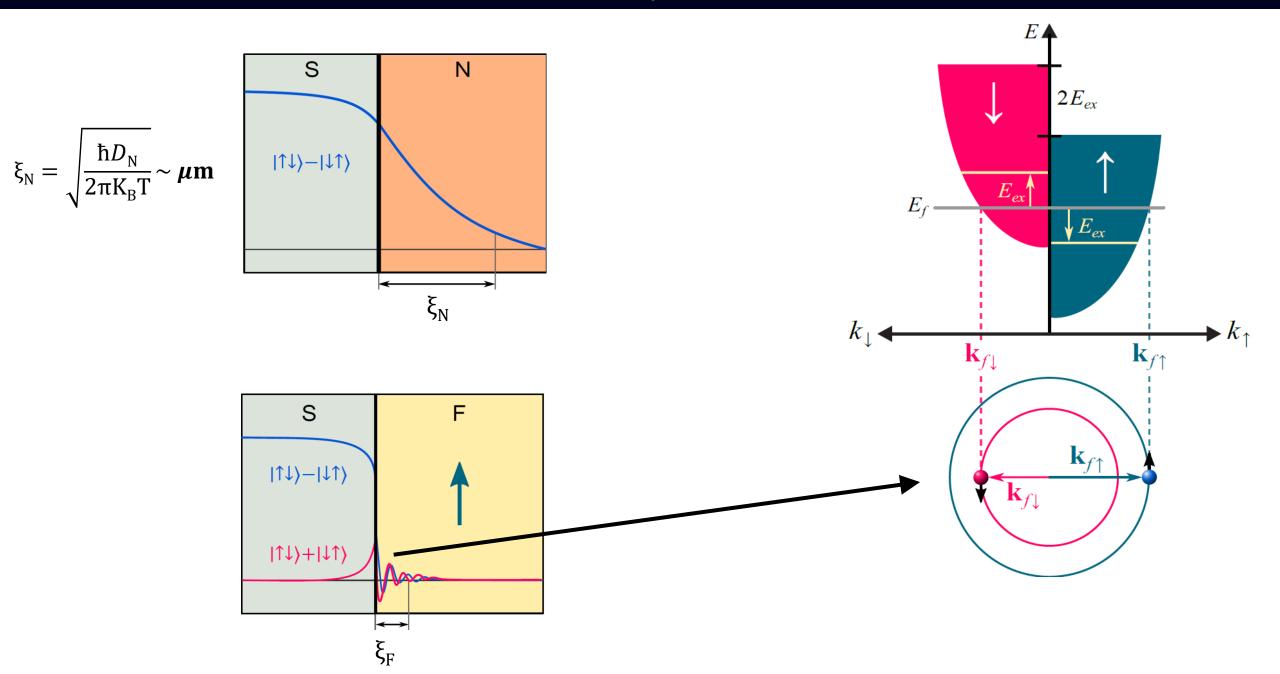
Allowed pairing symmetries



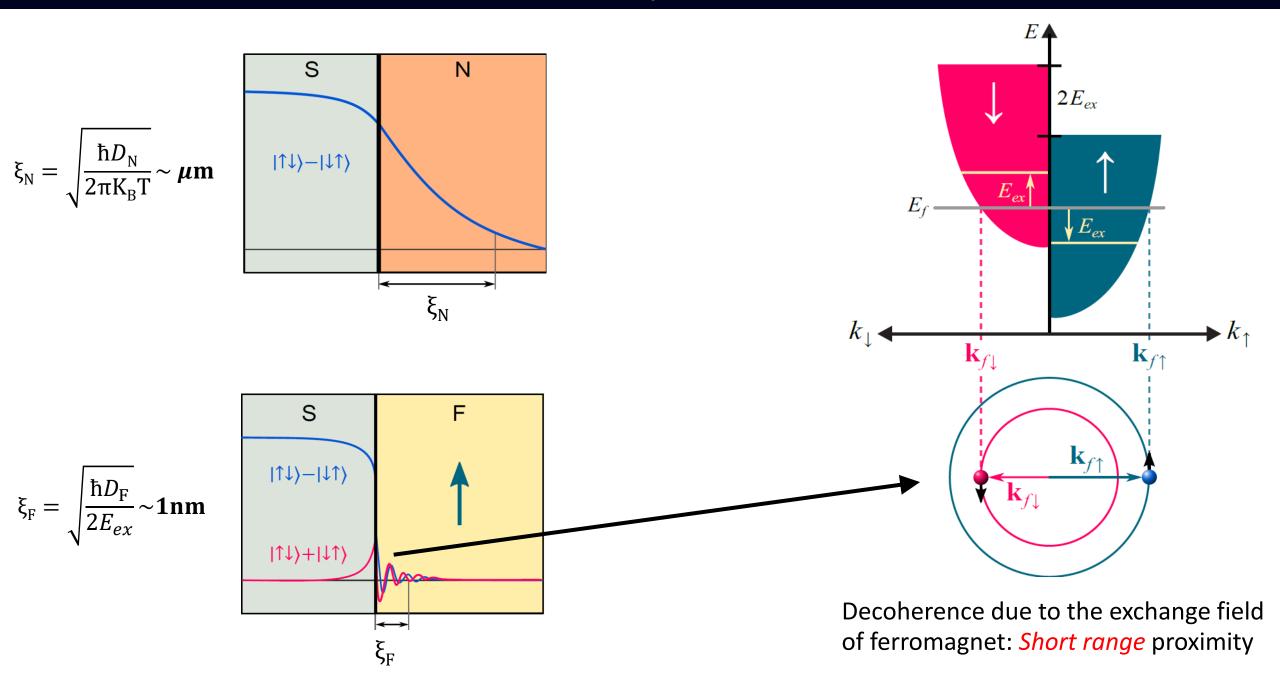
Proximity Effect

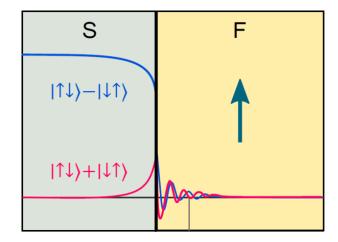


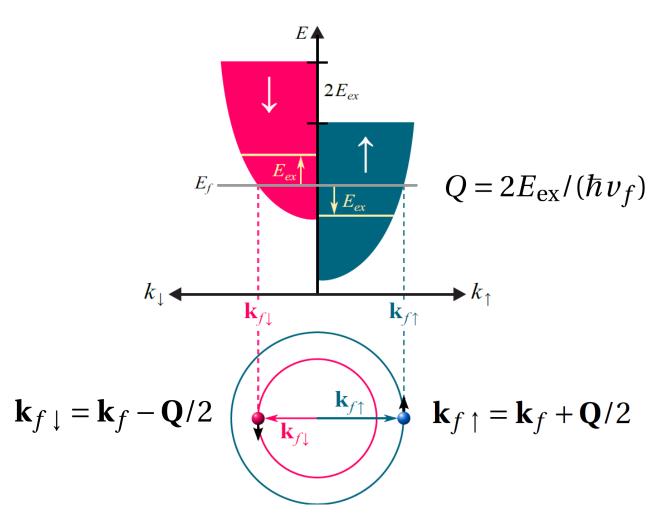
Proximity Effect



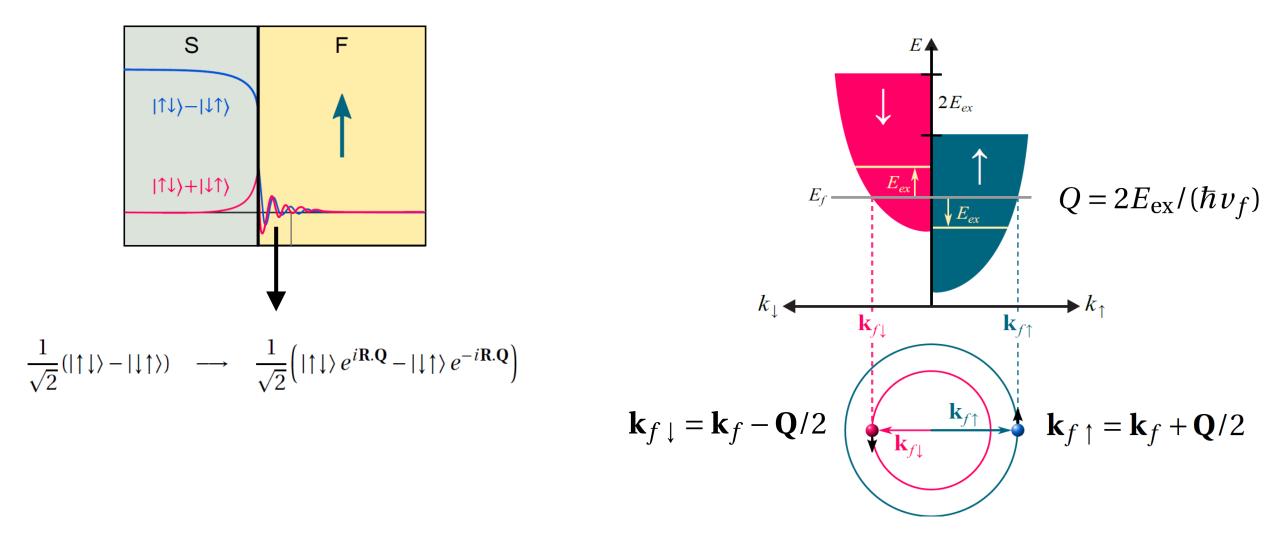
Proximity Effect



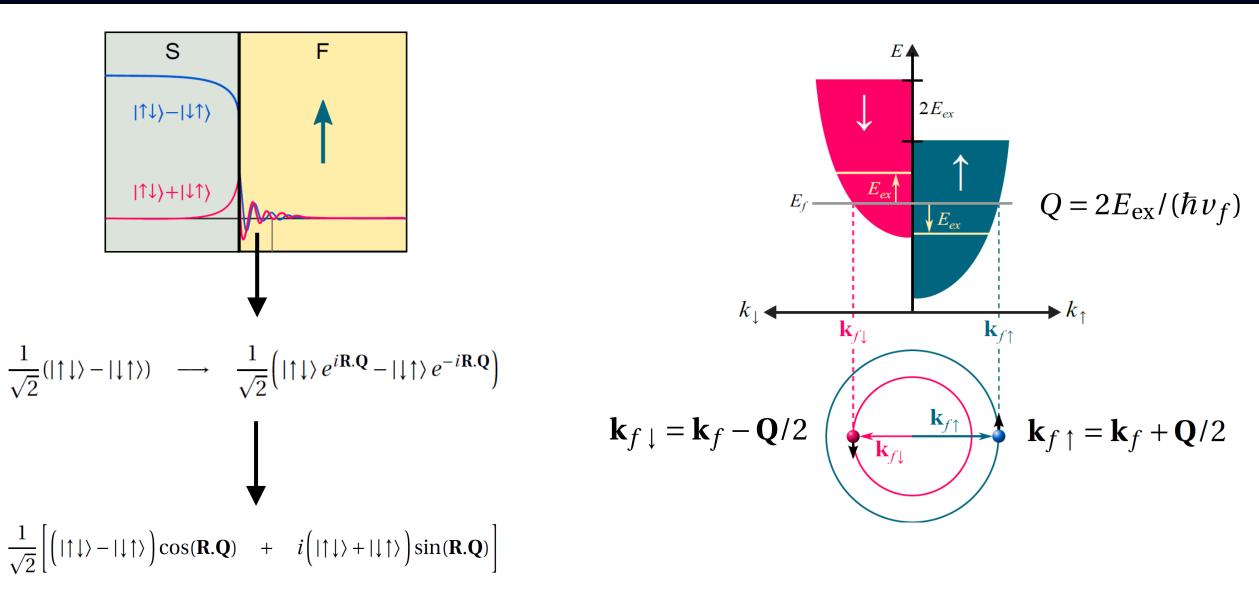




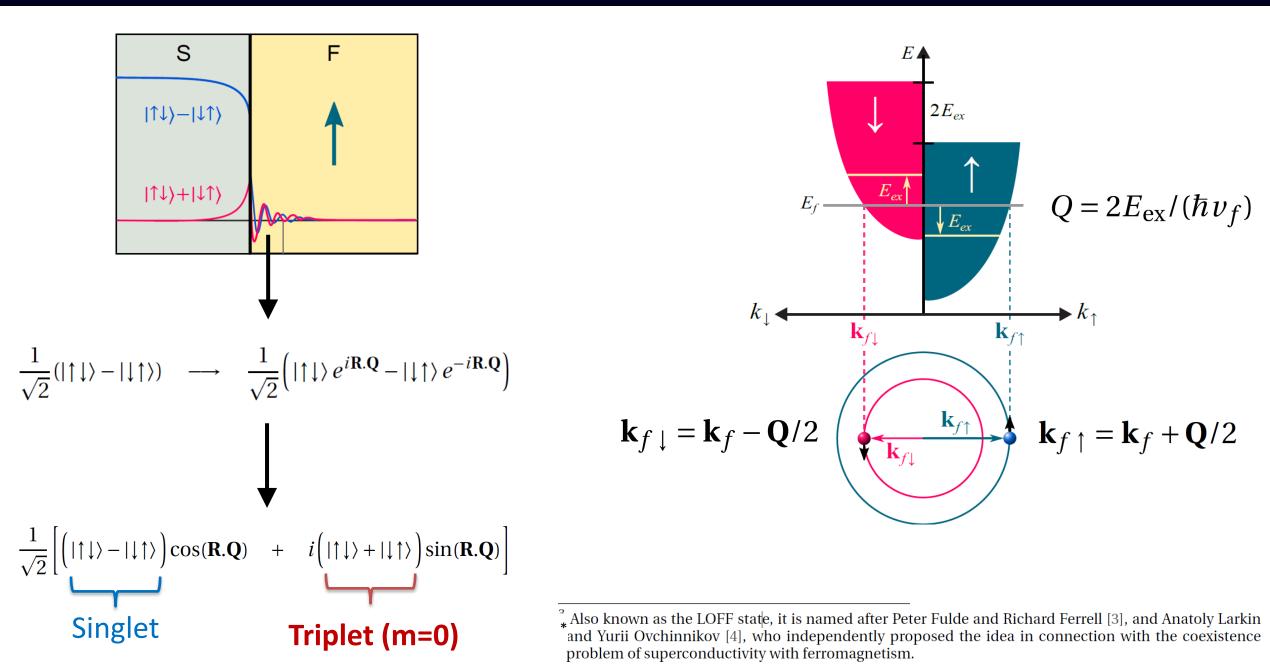
^{*} Also known as the LOFF state, it is named after Peter Fulde and Richard Ferrell [3], and Anatoly Larkin and Yurii Ovchinnikov [4], who independently proposed the idea in connection with the coexistence problem of superconductivity with ferromagnetism.

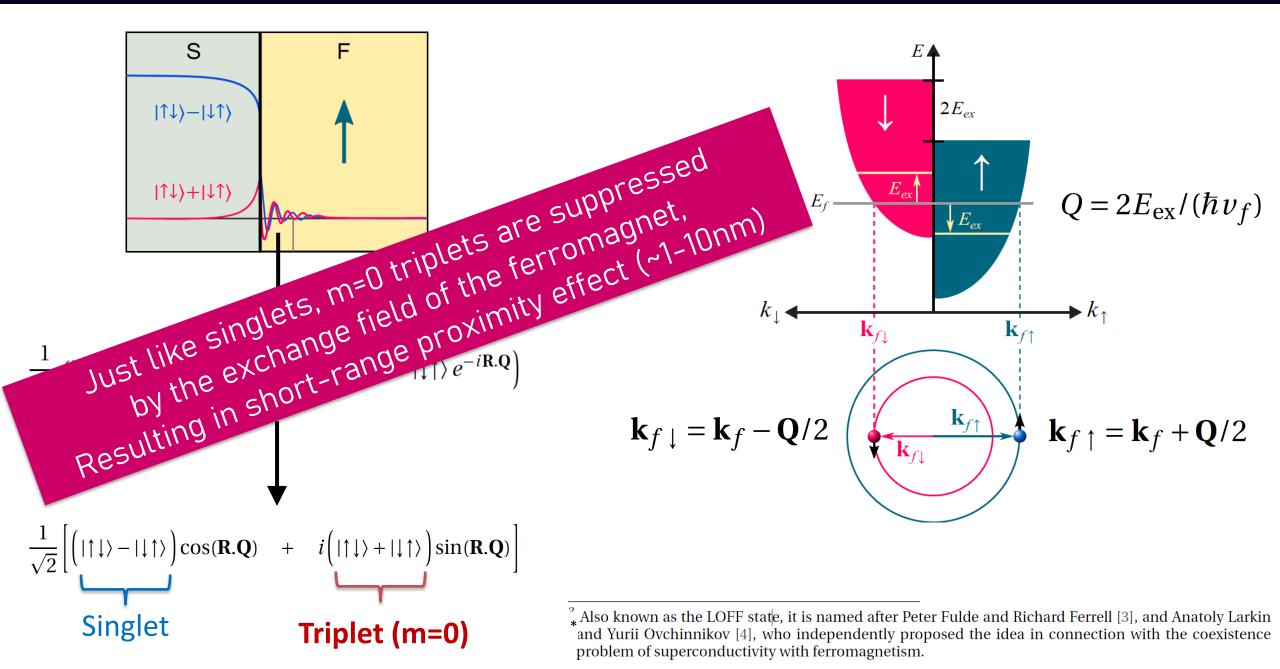


³ Also known as the LOFF state, it is named after Peter Fulde and Richard Ferrell [3], and Anatoly Larkin and Yurii Ovchinnikov [4], who independently proposed the idea in connection with the coexistence problem of superconductivity with ferromagnetism.

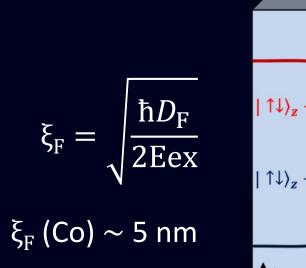


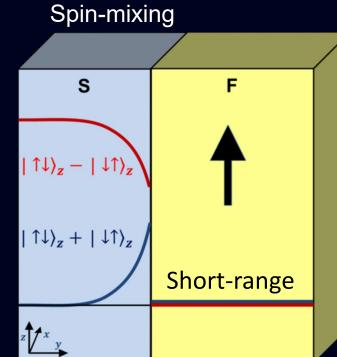
² Also known as the LOFF state, it is named after Peter Fulde and Richard Ferrell [3], and Anatoly Larkin and Yurii Ovchinnikov [4], who independently proposed the idea in connection with the coexistence problem of superconductivity with ferromagnetism.





 $|\uparrow\uparrow\rangle \qquad m_{z} = +1$ $|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \qquad m_{z} = 0 - z$ $|\downarrow\downarrow\rangle \qquad m_{z} = -1$



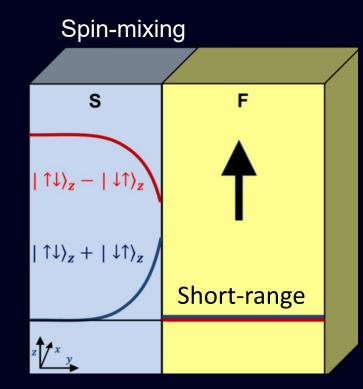


Long-range SF proximity: Spin-polarized Cooper pairs

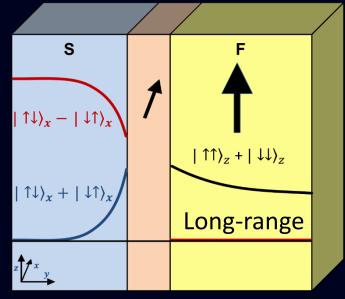
Long-range SF proximity: Spin-polarized Cooper pairs

$$\begin{array}{c} |\uparrow\uparrow\rangle & m_{z}=+1 \\ |\uparrow\downarrow\rangle & +|\downarrow\uparrow\rangle & m_{z}=0 & -z \\ |\downarrow\downarrow\rangle & m_{z}=-1 \end{array}$$

$$\xi_{\rm F} = \sqrt{rac{\hbar D_{\rm F}}{2 {\rm Eex}}}$$
 $\xi_{\rm F}$ (Co) ~ 5 nm



Spin-mixing + *rotation*



Long-range SF proximity: Spin-polarized Cooper pairs

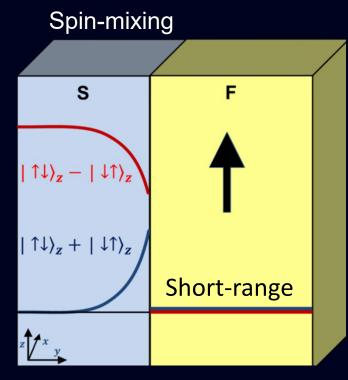
$$|\uparrow\uparrow\rangle \qquad m_{z} = +1$$

$$|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \qquad m_{z} = 0 - z$$

$$|\downarrow\downarrow\rangle \qquad m_{z} = -1$$

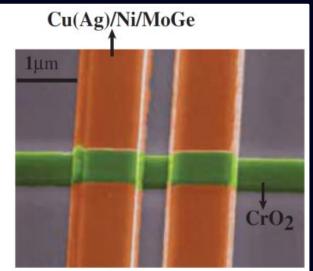
$$\xi_{\rm F} = \sqrt{\frac{\hbar D_{\rm F}}{2 {\rm Eex}}}$$

 $\xi_{\rm F}$ (Co) ~ 5 nm

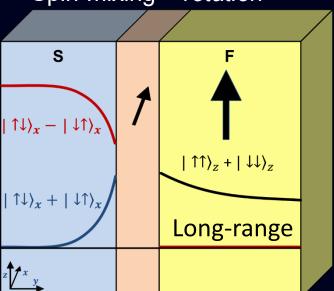


Spin-mixing + *rotation*

~100% spin polarized 700 nm CrO_2 wire $J_c \sim 10^9 \text{ A/m}^2!$

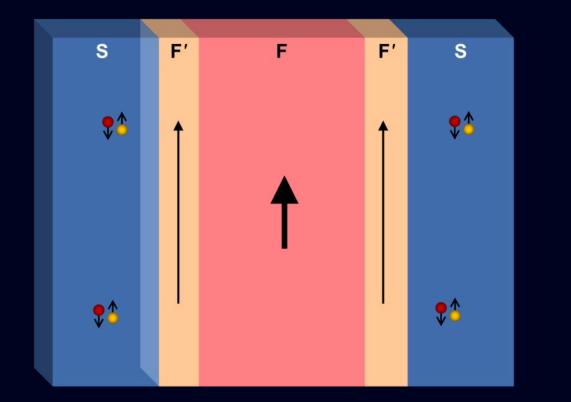


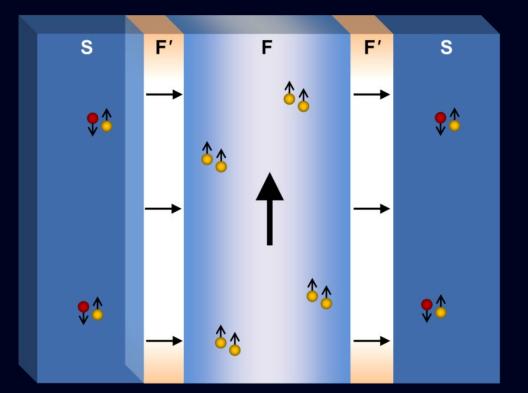
$$\xi_F^T \sim 100 \text{s nm}$$



Singh, Aarts et al., PRX, (2016)

Superconducting (dissipation-less) spintronics:



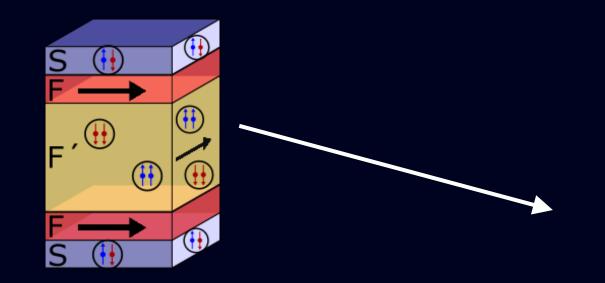


supercurrent on

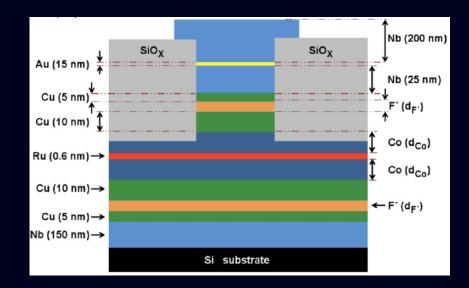
supercurrent off

Josephson junctions with non-collinear F layers

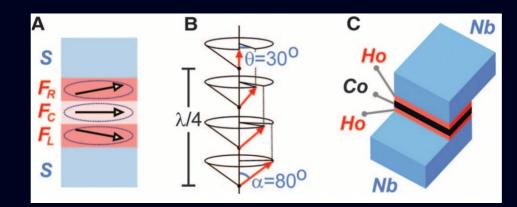
Device configuration (concept)



Actual devices



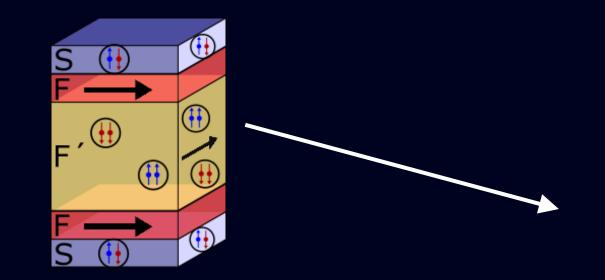
Khaire *et al.* PRL **104** (2010)



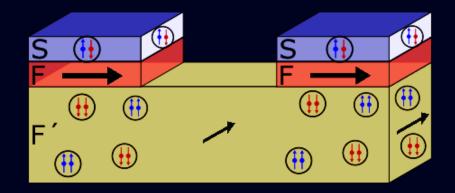
Robinson *et al.* Science, **329** (2010)

Josephson junctions with non-collinear F layers

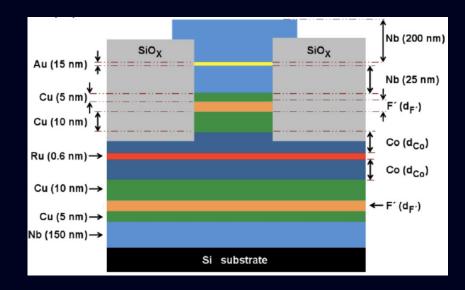
Device configuration (concept)



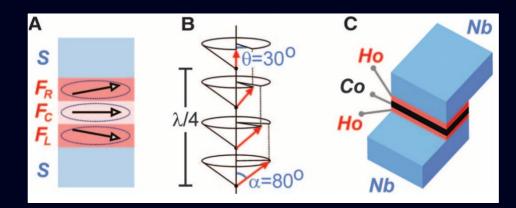
Planar?



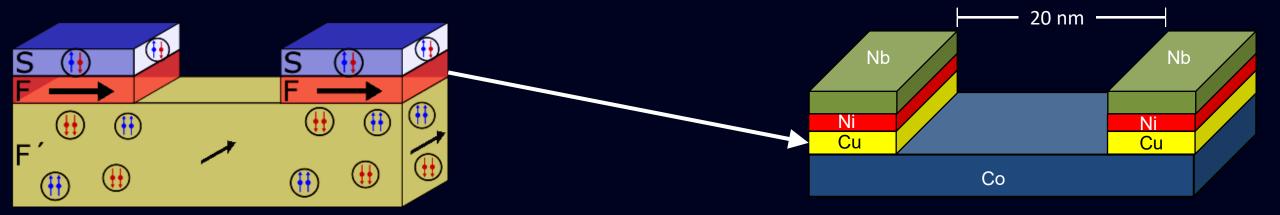
Actual devices

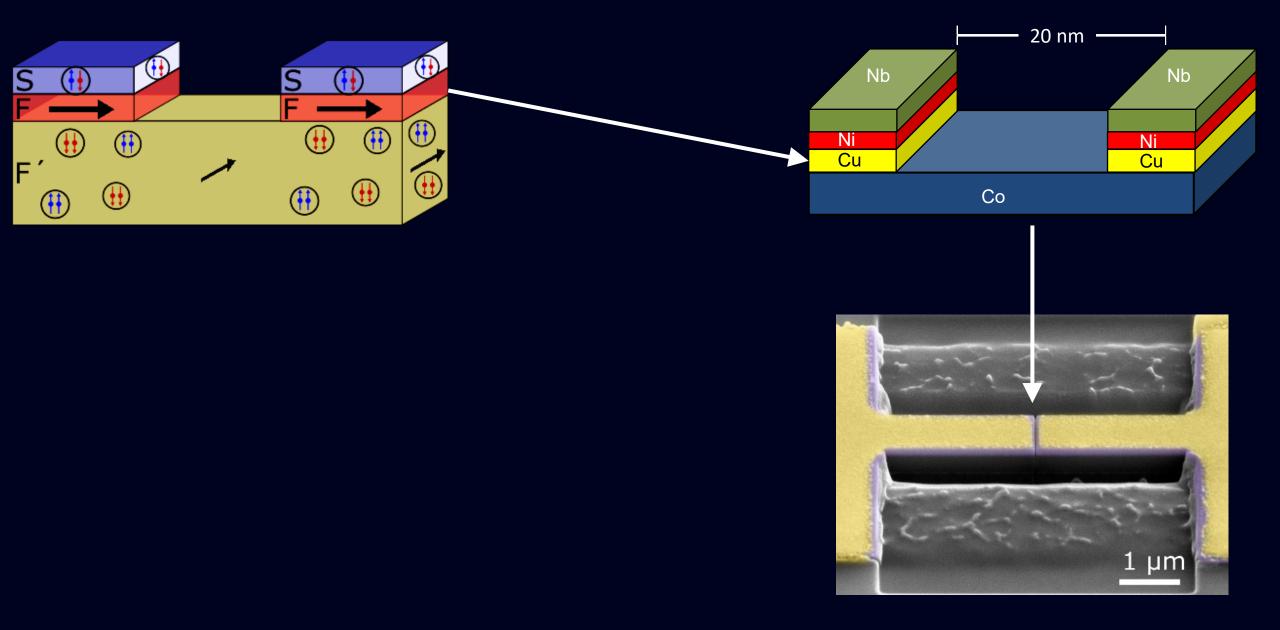


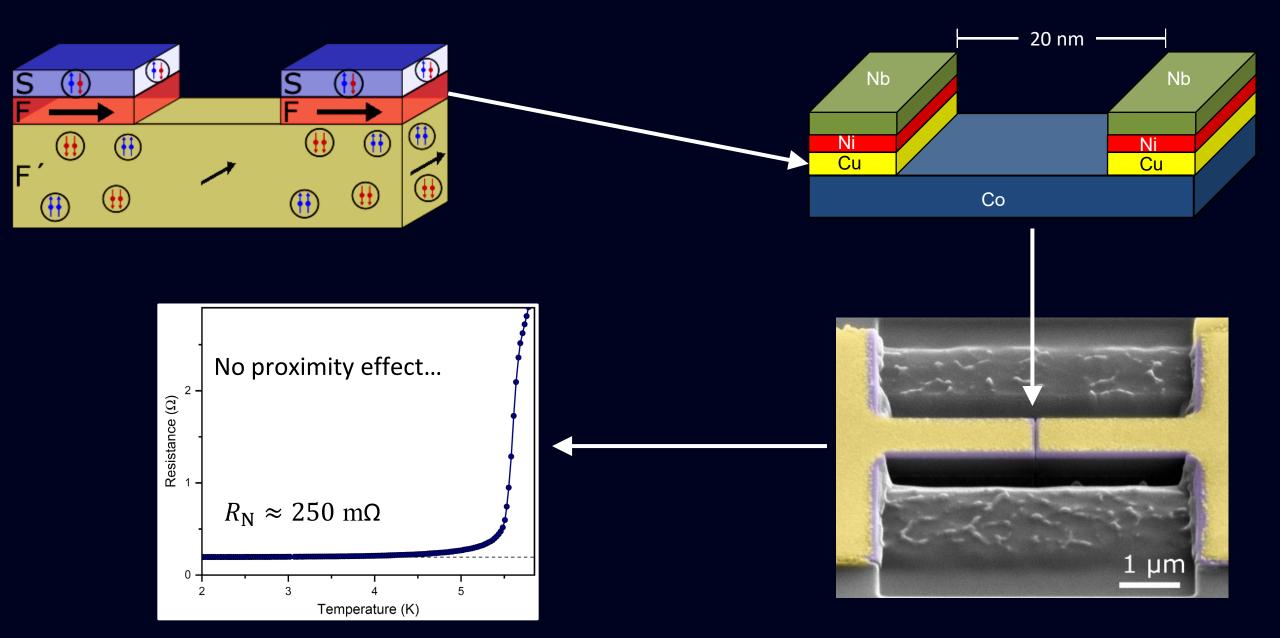
Khaire *et al.* PRL **104** (2010)

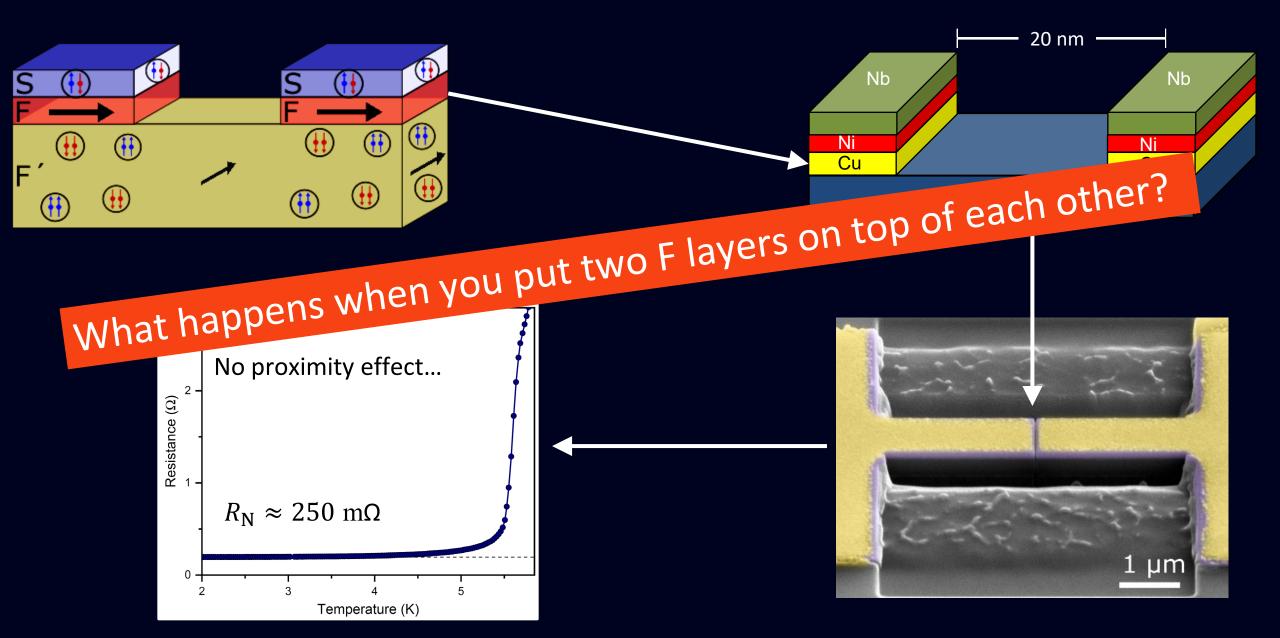


Robinson *et al.* Science, **329** (2010)

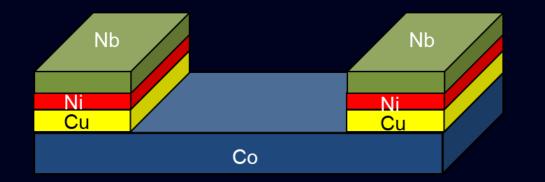


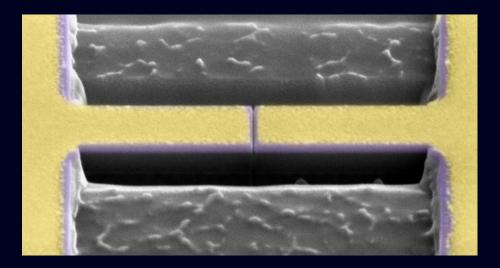




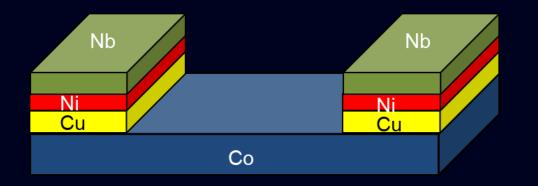


Let's simulate the magnetic layers



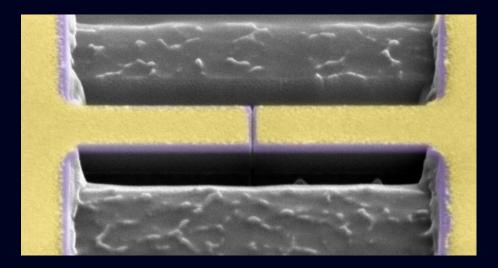


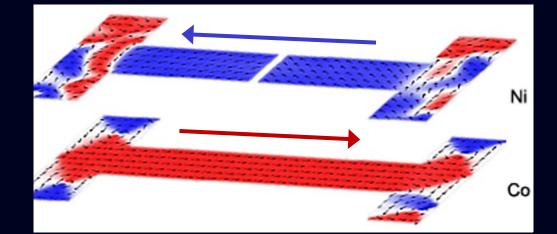
Let's simulate the magnetic layers

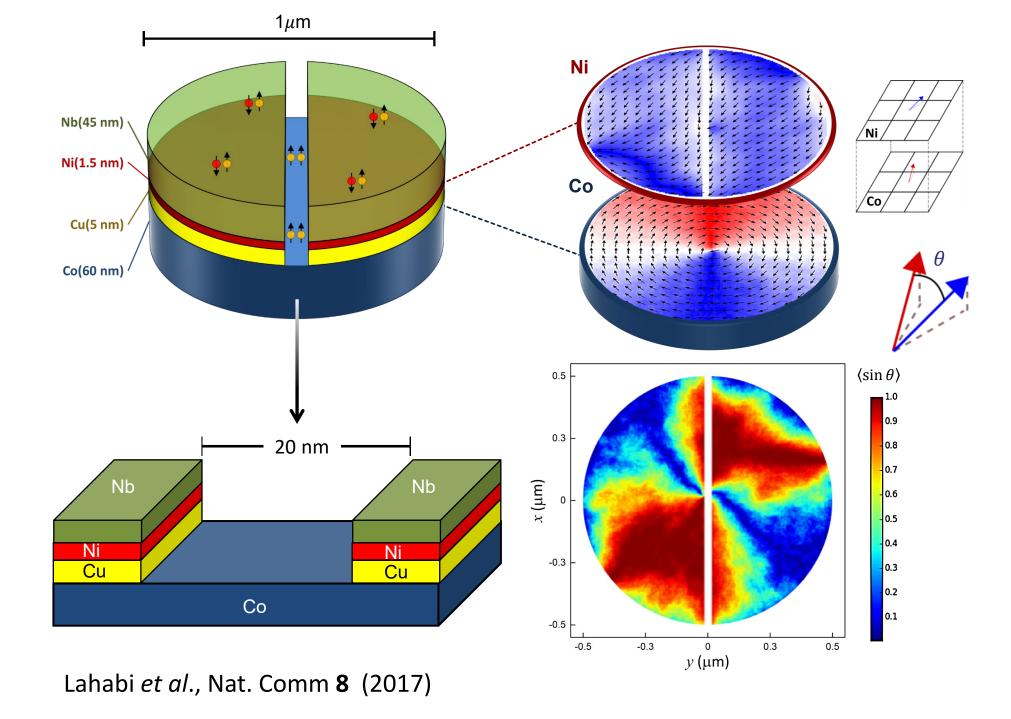


F layers have antiparallel magnetization.

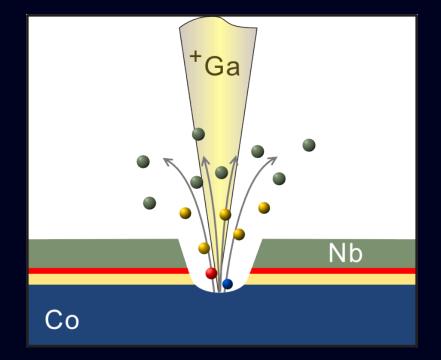
Why is this energetically favorable?

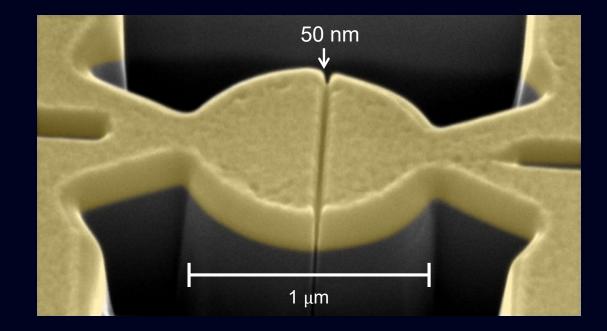




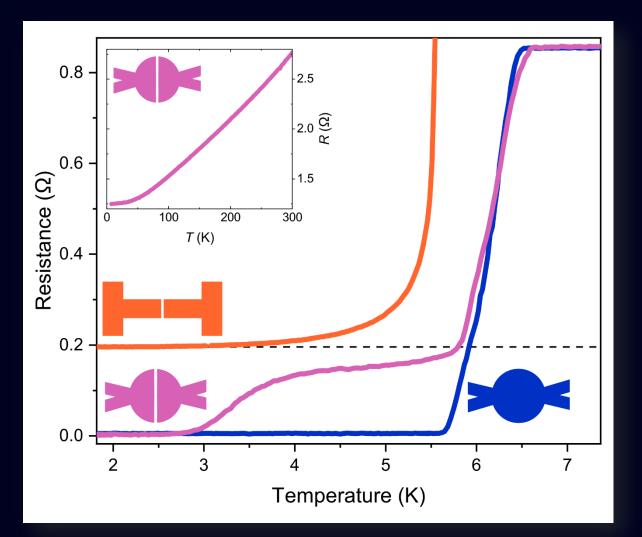


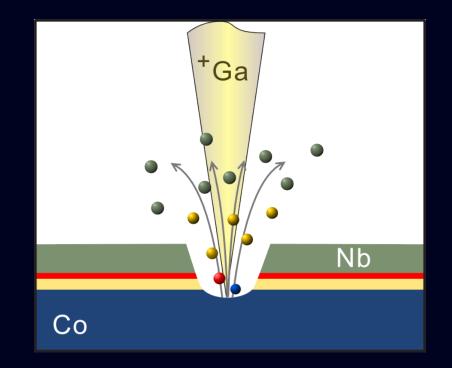
Nanostructured by +Ga focused ion beam

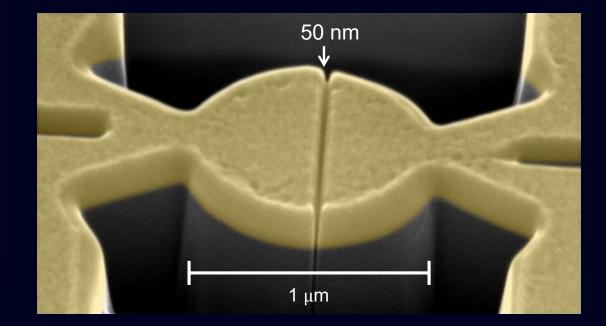




Nanostructured by +Ga focused ion beam







More on Josephson junctions next time

End of Lecture 4

A lot of the material covered here can be found in 1. 2003 review by Mackenzie & Maeno 2. Kaveh Lahabi's PhD thesis: Chapter 2 &3 (scan the QR) REVIEWS OF MODERN PHYSICS, VOLUME 75, APRIL 2003

The superconductivity of Sr_2RuO_4 and the physics of spin-triplet pairing

Andrew Peter Mackenzie

School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, Scotland

Yoshiteru Maeno

Department of Physics, Kyoto University, Kyoto 606-8502, Japan and International Innovation Center, Kyoto University, Kyoto 606-8501, Japan


```
Chapter 2
```

Chapter 3

Kaveh Lahabi (2025)