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Recap

Normal materials: electrons (fermions)  
Ψ depends on the number of particles.

In a typical macroscopic system:
- Ψ unknown
- QM coherence destroyed by scattering

Superconductors: Bosonic condensates
Cooper pairs live in a one coherent macroscopic state 
Macroscopic wavefunction = same as a single e pair

Don’t think of a SC as a collection of separate pairs/particles

Paired electrons are now a single macroscopic entity



Occupied

e

h

Normal (T>Tc) SC (T<Tc)

Electrons/holes can be excited above/below 
the gap, but they can’t exist within it.

‘Down with the fermions! Long live the bosonic condensate!’



Schrödinger

Ginzburg-Landau equations

Elegance of superconductors: Macroscopic wavefunction

𝑚𝑚∗ = 2𝑚𝑚𝑒𝑒

𝑒𝑒∗ = 2𝑒𝑒𝛁𝛁 × 𝑨𝑨 vector potential = 𝜇𝜇0𝒉𝒉 magnetic field

𝛹𝛹 = Ψ(r) 𝑒𝑒𝑖𝑖𝜑𝜑(𝑟𝑟)



Once in the SC state, only two length scales matter: ξ and λ

𝛹𝛹 = Ψ(r) 𝑒𝑒𝑖𝑖𝜑𝜑(𝑟𝑟)

ξ : Coherence Length 
“stiffness” of the amplitude

How rapidly does Ψ
(Cooper pair density) “bend” 
in real space

λ: magnetic penetration depth 
(stiffness of the phase 𝜑𝜑)

λ: Characteristic decay length of 
magnetic fields inside a SC

What’s the link between 𝜑𝜑 and 
screening of magnetic field?

λ and ξ are independent
material parameters.

𝐵𝐵0 Superconductor



Today’s lecture

What happens when you place a superconductor in a magnetic field? 

Why does a large enough magnetic field destroy superconductivity? 
(why do superconductors have an upper critical field?)

Why do we have two “types” of superconductors?

What’s different about the magnetic field response of mesoscopic structures?
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H-T phase diagrams

Type ii: Can host Abrikosov vortices with normal cores

True for all SCs (both type i & ii)!

How does magnetic field destroy superconductivity? 

Magnetic flux enters in quantized units of

Φ0 =
ℎ

2𝑒𝑒
≈ 2.067 × 10−15 T/m2

So, why two types?
Why some SCs host vortices and others don’t?

Ψ = Ψ(r) 𝑒𝑒𝑖𝑖𝜑𝜑(𝑟𝑟)

𝜑𝜑 has to wind (continuously) by nx2π, so that 𝛹𝛹 remains single-valued.
But gradient in 𝜑𝜑 leads to…? 

Magnetic flux couples to the orbital phase (𝜑𝜑) of Ψ

Supercurrent costs (kinetic) energy. Where does that come from?



Type ll: Anatomy of an Abrikosov Vortex 

Flux enters through the normal core in quantized units of Φ0
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Type ll: Anatomy of an Abrikosov Vortex 

Flux enters through the normal core in quantized units of Φ0

𝜑𝜑 winds by 2π around the flux, generating a circulating current  J ~1/𝑟𝑟
At 𝑟𝑟 > λ: J → 0, B → 0

Abrikosov vortex lattice

How was this image taken?

𝛹𝛹 = Ψ(r) 𝑒𝑒𝑖𝑖𝜑𝜑(𝑟𝑟)
But why do we need a normal core? 

Ψ
Normal core

𝐵𝐵𝑧𝑧=0

𝐵𝐵𝑧𝑧(𝑟𝑟) 𝐵𝐵𝑧𝑧(𝑟𝑟) =
Φ0

2π λ2
ln (

λ
𝑟𝑟

)

So what determines if type-i or type-ii?? λ / ξ

S S S SN N N



Imaging vortices with STM: What does STM probe?



E

µL

µR

NR(E)NL(E)

TipTip SampleSample

2Δ
eV

E

µL

µR

NR(E)NL(E)

TipTip SampleSample

2Δ
eV

Imaging vortices with STM: What does STM probe?
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Other ways to image vortices?

Vortices in YBCO

Wells et al, Scientific Reports (2015)

Scanning SQUID

Image taken yesterday!

SQUID-on-tip (Lahabi lab)

4µm

Use the magnetic signal



Flux quantization in confined geometries
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If Φext ≠ 𝑛𝑛Φ0 → a circulating current J compensates for the phase offset 

𝜑𝜑 needs to wind by n × 2π around the loop Φ = 𝑛𝑛 Φ0

Φext ≠ 𝑛𝑛Φ0, J ≠ 0

Φ = 𝑛𝑛 Φ0
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Φext = 0,Φ0, 2Φ0 …→ J = 0

𝛹𝛹 = Ψ 𝑒𝑒𝑖𝑖𝜑𝜑

If Φext ≠ 𝑛𝑛Φ0 → a circulating current J compensates for the phase offset 

However, supercurrents still cost kinetic energy & should be minimized → Φext = 𝑛𝑛Φ0, J = 0

𝜑𝜑 needs to wind by n × 2π around the loop Φ = 𝑛𝑛 Φ0

Φ = 𝑛𝑛 Φ0

Thin walls:  w < λ (T) & w < ξ (T)
(no Meissner & uniform Ψ )



Φext /Φ0
0 1 2

J

0 < Φext < Φ0/2 

Φ = 0

Let’s ramp up the external field: RememberΦext= 𝜇𝜇0𝐻𝐻ext × (Ring area)

J > 0

A supercurrent starts to circulate in the ring



Φext /Φ0
0 1 2

J

Let’s ramp up the external field: A bit more

0 < Φext < Φ0/2 

Φ = 0

J > 0

The superconductor needs to work harder to compensate for the phase offset
→ More supercurrent



Φext /Φ0
0 1 2

J

Let’s ramp up the external field: Keep going

Supercurrent increases its veolcity to keep up

0 < Φext < Φ0/2 

Φ = 0

J > 0
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But what happens as Φext goes above Φ0/2?

Φext → Φ0/2 

Φ = ?



Φext /Φ0
0 1 2

J

Should the suppercurrent keep increasing its velocity to cencel out the external flux 
(continue as Φ = 0) until it reaches Φ0? 

Φ = ?

?



Φext /Φ0
0 1 2

J

Should the suppercurrent keep increasing its velocity to cencel out the external flux 
(continue as Φ = 0) until it reaches Φ0? 

Φ = ?

?

No, there’s a better way!



Φext /Φ0
0 1 2

J

Superconductor saves its energy by switching the direction of J above Φ0/2, so that  
1Φ0 can enter the loop, even though Φ𝑒𝑒𝑒𝑒𝑒𝑒 < Φ0

This means the supercurrent starts to amplify the flux (instead of cancelling it)!

Φ = Φ0



Φext /Φ0
0 1

J

2

The supercurrent winds down as we increase the field above Φ0/2 and 
J stops when Φ𝑒𝑒𝑒𝑒𝑒𝑒 = Φ0

Φ = Φ0
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This cycle repeats every Φ0

Φ = nΦ0



Φext /Φ0
0 1 2

J

This cycle repeats every Φ0

Φ = nΦ0

Moral of the story:
1. Superconductors don’t just screen magnetic fields, they can also amplify it! 
All they care about is that their wavefunction remains single-valued, 
i.e., that their phase can wind continuously by integer multiples of 2π. 

2. Unlike in normal metals, where a current can be generated by a changing magnetic 
field (J ∝ 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑). In SCs, the supercurrent scales with the value of magnetic flux (not 
its rate, 𝑑𝑑Φ/𝑑𝑑𝑑𝑑) and its relation with Φ0.
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Little-Parks Experiment

𝐸𝐸k ∝ 𝐽𝐽𝑠𝑠2

𝑇𝑇c

R

𝐽𝐽𝑠𝑠

⁄Φext Φ0

𝐼𝐼+

𝐼𝐼−

𝑉𝑉+

𝑉𝑉−

Little & Parks 1962

Period = ℎ
𝟐𝟐𝟐𝟐 Why the parabolic background?

(see later & Moshchalkov)
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What’s happening at Φext = Φ0/2 exactly?

Or

Φ = 0

?J>0 or J> 0 ??

Φ = Φ0

Which way does the supercurrent circulate if Φext is exactly Φ0/2

What’s the flux inside the ring? 0 or Φ0? 



Φext /Φ0
0 1 2

J

What’s happening at Φext = Φ0/2 exactly?

Or

Φ = 0

?J>0 or J> 0 ??

Which way does the supercurrent circulate if Φext is exactly Φ0/2

What’s the flux inside the ring? 0 or Φ0? 

Φ = Φ0

J goes both ways at the same time! 
The loop is in superposition (i.e., a qubit), 
where both Φ = 0 and Φ = Φ0 happen 



Or

Φext /Φ0
0 1 2

J

What’s happening at Φ = Φ0/2 exactly?

Inserting a π-junction in a loop is 
equivalent to applying Φ0/2 flux
(see Josephson junctions later)

Φ = 0

Φ = Φ0

?J>0 or J> 0 ??



Break?
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?







0 0 1 1

From Moshchalkov



V.Bruyndoncx et al., Europhys. Lett. 36,449 (1996)
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?   ?

V.Bruyndoncx et al., Europhys. Lett. 36,449 (1996)

or



?   ?

V.Bruyndoncx et al., Europhys. Lett. 36,449 (1996)

“a part of the middle link will revert to the normal phase, and 
that “this in effect will convert the double loop to a single loop”

or
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Little-Parks effect in a single mesoscopic Al loop

Φ0 =
ℎ
2𝑒𝑒

Strunk et al, PRB, 54, R12701 (1996)
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The loop (local)

Φ = 𝜇𝜇0𝐻𝐻𝑎𝑎2

a

w

Little-Parks effect in a single mesoscopic Al loop

Φ0 =
ℎ
2𝑒𝑒

Strunk et al, PRB, 54, R12701 (1996)

𝑇𝑇𝑐𝑐𝑐 − 𝑇𝑇𝑐𝑐(Φ)
𝑇𝑇𝑐𝑐𝑐

=
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Loop (oscillations)
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The loop (local)
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Loop (oscillations)

Parabolic background: Hc (T) in confined SCs

a 1-D line (no loop)

Strunk et al, PRB, 54, R12701 (1996)



Φ = 𝜇𝜇0𝐻𝐻𝑎𝑎2
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ℎ
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What if we just measured a piece of the connecting wire? 
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What if we just measured a piece of the connecting wire? 

Lead (non-local)
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End of Lecture 2

A lot of the material covered in this lecture 
can be found on Moshchalkov’s book 

Kaveh Lahabi (2025)
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