Superconductivity: Lecture 2

Mesoscopic superconductors & phase diagrams

Kaveh Lahabi (2025)



Recap

Normal materials: electrons ( )

Y depends on the number of particles.

Y (eq,€5,€3,...,€6p1)

In a typical macroscopic system:

- ¥ unknown
- QM coherence destroyed by scattering

Superconductors: Bosonic condensates

Cooper pairs live in a one coherent macroscopic state ¥ (81: 32)

Macroscopic wavefunction = same as a single e pair

Don’t think of a SC as a collection of separate pairs/particles

Paired electrons are now a single macroscopic entity




‘Down with the fermions! Long live the bosonic condensate!’

Electrons/holes can be excited above/below
the gap, but they can’t exist within it.

Occupied

Normal (T>Tc) SC (T<Tc)



Elegance of superconductors: Macroscopic wavefunction

Schrodinger

L (—thV — eA)* ¢ + Uyp = Ev Y = |¥(r)|e®™)

2m

Ginzburg-Landau equations

1
——(—1hV — e* A)* Y5 + Bl s = —anbs
2m>*
V X A (vector potential) = yyh (magnetic field) e” =2e
m" = 2m,

X (—1hV — e A) s + s (1hV — e A)yT]

S




Once in the SC state, only two length scales matter: ¢ and A

Y = |¥(r)|e™

¢ : Coherence Length
“stiffness” of the amplitude

How rapidly does ||
(Cooper pair density) “bend”
in real space

A: magnetic penetration depth
(stiffness of the phase @)

A: Characteristic decay length of
magnetic fields inside a SC

What'’s the link between ¢ and
screening of magnetic field?

A and € are independent
material parameters.

Superconductor




Today'’s lecture

What happens when you place a superconductor in a magnetic fielde

Why does a large enough magnetic field destroy superconductivitye
(why do superconductors have an upper critfical field?)

Why do we have two "“types” of superconductorse

What's different about the magnetic field response of mesoscopic structurese



H-T phase diagrams Y = |¥(r)|e™
How does magnetic field destroy superconductivity?

normal
state

Meissner
state
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H-T phase diagrams Y = |¥(r)|e™
How does magnetic field destroy superconductivity?

Magnetic flux couples to the orbital phase (¢) of W normﬂate

Meissner
@ has to wind (continuously) by nx2m, so that ¥ remains single-valued. state

But gradient in ¢ leads to...?

Supercurrent costs (kinetic) energy. Where does that come from?

Type ii: Can host Abrikosov vortices with normal cores

Magnetic flux enters in quantized units of

h
g = 5— =~ 2.067 x 10715 T/m’

e i

True for all SCs (both type i & ii)!




H-T phase diagrams Y = |¥(r)|e™
How does magnetic field destroy superconductivity?

Magnetic flux couples to the orbital phase (¢) of W normﬂate

Meissner
@ has to wind (continuously) by nx2m, so that ¥ remains single-valued. state

But gradient in ¢ leads to...?

Supercurrent costs (kinetic) energy. Where does that come from?

Type ii: Can host Abrikosov vortices with normal cores

Magnetic flux enters in quantized units of

h
By = -~ 2.067 X 107° T/m?

T mixed state

True for all SCs (both type i & ii)!

Meissner
state




H-T phase diagrams Y = |¥(r)]|ee™

How does magnetic field destroy superconductivity?

normal

Magnetic flux couples to the orbital phase (¢) of W state

Meissner
@ has to wind (continuously) by nx2m, so that ¥ remains single-valued. state

But gradient in ¢ leads to...?

Supercurrent costs (kinetic) energy. Where does that come from?

Type ii: Can host Abrikosov vortices with normal cores

Magnetic flux enters in quantized units of

h
By = -~ 2.067 X 107° T/m?

T mixed state

True for all SCs (both type i & ii)!

Meissner
state

So, why two types?

Why some SCs host vortices and others don’t?




Flux enters through the normal core in quantized units of @,

@ winds by 2rt around the flux, generating a circulating current J ~1/r
Atr >N J—->0 B8-0

Y = |Lp(r)|ei<p(r)

Type ll: Anatomy of an Abrikosov Vortex



Flux enters through the normal core in quantized units of @,

@ winds by 2rt around the flux, generating a circulating current J ~1/r
Atr >N J—->0 B8-0

But why do we need a normal core?

Y = |Lp(r)|ei<p(r)

ormal core [

circular currents

Type ll: Anatomy of an Abrikosov Vortex



Flux enters through the normal core in quantized units of @,

@ winds by 2rt around the flux, generating a circulating current J ~1/r
Atr >N J—->0 B8-0

But why do we need a normal core?

So what determines if type-i or type-ii?? Y = |¥(r)|et*™)
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Flux enters through the normal core in quantized units of @,

@ winds by 2rt around the flux, generating a circulating current J ~1/r
Atr >N J—->0 B8-0

But why do we need a normal core?

So what determines if type-i or type-ii?? VA Y = |¥(r)|et*™)

circular currents

Type ll: Anatomy of an Abrikosov Vortex



Flux enters through the normal core in quantized units of @,

@ winds by 2rt around the flux, generating a circulating current J ~1/r
Atr >N J—->0 B8-0

But why do we need a normal core?

So what determines if type-i or type-ii?? VA Y = |¥(r)|et*™)

Abrikosov vortex lattice

r

circular currents

How was this image taken?

Type ll: Anatomy of an Abrikosov Vortex



Imaging vortices with STM: What does STM probe?

Sample DOS




Imaging vortices with STM: What does STM probe?
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Vortices in YBCO
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SQUID-on-tip (Lahabi lab)
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Vortices in YBCO
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Image taken yesterday! Wells et al, Scientific Reports (2015)




Flux quantization in confined geometries



Thin walls: w<A(T) & w<E&(T)
(no Meissner & uniform |W¥|)

2 (Dext /(DO

@ needs to wind by n x 2rtaround the loop —» ® =n®, ¥ = |qj|eup



Thin walls: w<A(T) & w<E&(T)
(no Meissner & uniform |W¥|)

A
Doyt F NPy, J £ 0
J
0 I : >
1 2 Deyi /D
@ needs to wind by n x 2rtaround the loop —» ® =n®, ¥ = |qj|eup

If @yt # NPy - a circulating current J compensates for the phase offset



Thin walls: w<A(T) & w<E&(T)
(no Meissner & uniform |W¥|)

A
¢6Xt — O, (D(), ZDO > J= 0
J
10 : ¢ >
Z (Dext/(DO
@ needs to wind by n x 2rtaround the loop —» ® =n®, ¥ = |q;|eup

If @yt # NPy - a circulating current J compensates for the phase offset

However, supercurrents still cost kinetic energy & should be minimized 2> @yt = n®,, J =0



Let’s ramp up the external field: Remember @y = toHeyt X (Ring area)

A

0 < Dy < Dy/2

—90/ : o : o >

A supercurrent starts to circulate in the ring



Let’s ramp up the external field: A bit more

A

0 < Dy < Dy/2

The superconductor needs to work harder to compensate for the phase offset
—> More supercurrent



Let’s ramp up the external field: Keep going

A

0 < Dy < Dy/2

Supercurrent increases its veolcity to keep up



But what happens as ®_,, goes above @, /27

A

(Dext - (D()/z




Should the suppercurrent keep increasing its velocity to cencel out the external flux
(continue as ® = 0) until it reaches ©;?



Should the suppercurrent keep increasing its velocity to cencel out the external flux
(continue as ® = 0) until it reaches ©;?

No, there’s a better way!



Superconductor saves its energy by switching the direction of J above ®,/2, so that
1®, can enter the loop, even though ®@,,; < ®,

This means the supercurrent starts to amplify the flux (instead of cancelling it)!



The supercurrent winds down as we increase the field above ®,/2 and
J stops when @, = @,



(I)ext /(DO

This cycle repeats every @,



I\/\OI:CH of the story:

1. Superconductors don't just screen magnetic fields, they can also amplify it!
All they care about is that their wavefunction remains single-valued,
l.e., that their phase can wind continuously by integer multiples of 2n.

2. Unlike in normal metals, where a current can be generated by a changing magnetic
field (] < dB/dt). In SCs, the supercurrent scales with the value of magnetic flux (not
its rate, d®/dt) and its relation with @,.

This cycle repeats every @,




Little-Parks Experiment

Js

¢ext/ CDO




Little-Parks Experiment
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Little-Parks Experiment

Js




Little-Parks Experiment

Little & Parks 1962

. h
Period = —
2e

Why the parabolic background?
(see later & Moshchalkov)

Js




What's happening at @, = ®,/2 exactly?

J>0o0rJ>077?

0 2 eyt /D

Which way does the supercurrent circulate if @ is exactly ®,/2

What’s the flux inside the ring? 0 or ®,?



What's happening at @, = ®,/2 exactly?

J>0o0rJ>077?

0 2 eyt /D

Which way does the supercurrent circulate if @ is exactly ®y/2

What’s the flux inside the ring? 0 or ®,?
J goes both ways at the same time!

The loop is in superposition (i.e., a qubit),
where both ® =0 and ® = ®, happen




What's happening at @ = ®,/2 exactly?

f

J>00rJ>07?

2 (Dext /(DO

ohusi LETTERS
p ySICS PUBLISHED ONLINE: 20 JUNE 2010 | DOI:10.1038/NPHYS1700

Inserting a -junction in a loop is Implementation of superconductor/ferromagnet/
equivalent to applying ®,/2 flux superconductor rt-shifters in superconducting
(see Josephson junctions later) digital and quantum circuits

A. K. Feofanov', V. A. Oboznov?, V. V. Bol'ginov?, J. Lisenfeld’, S. Poletto’, V. V. Ryazanov?,
A. N. Rossolenko?, M. Khabipov?, D. Balashov?, A. B. Zorin?, P. N. Dmitriev*, V. P. Koshelets*
and A. V. Ustinov'*
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H-T phase diagram: bulk vs mesoscopic

D

w&(0) o H ) ’

The parabolic background corresponds to the
London limit, where |¥| is constant throughout the
mesoscopic structure (|W¥]is 1D).

0.90 0.95 i i 3
Tc(H)/ TcO TC(H)/ TCO

(a) line (b) loop and dot

ig. 2.1 The measured superconducting/normal-state phase boundary as a function of
he reduced temperature T'(H)/T.o for (a) a line and (b) a loop and a dot. The solid
line in (a) is calculated using Eq. (2.1) with £(0) = 110nm as a fitting parameter. The
ashed line represents T.(H) for bulk aluminium. Comparing T.(H) for these three
different mesoscopic structures, made of the same material, one clearly sees the effect of
opology on T.(H) (after [300]).

From Moshchalkov
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H (external)

Thin film under in-plane field = Line (1D)




H-T phase diagram: bulk vs mesoscopic
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Multi-loop networks
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V. Bruyndoncx et al., Europhys. Lett. 36,449 (1996).
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Multi-loop networks
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Multi-loop networks
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Multi-loop networks
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Multi-loop networks

C e N O RO < o ©
CD/(DO =uH S /®,

)| ; I
N B B B L L -2 1 2‘?3 Hm
80 -70 60 -50 40 -30 -20 10 O

AT _(mK)

V. Bruyndoncx et al., Europhys. Lett. 36,449 (1996).
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Fig. 3.2 Experimental T.(®) data for the ‘bola’ with the parabolic background o
Eq. (2.1) subtracted (left and right panels show a single and a few periods, respectively).
Experimental data is represented by dots, whereas black and gray lines correspond to the
theoretical results obtained in the London limit and with the de Gennes—Alexander ap-
proach, respectively. The latter takes the presence of the leads into account (after [345]).

From Moshchalkov
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Quantized Magnetic Flux
in Superconductors

Experiments confirm Fritz London’s early concept that
“a part of the middle link will revert to the normal phase, and R AR i L) e e

that “this in effect will convert the double loop to a single loop”

R. D. Parks



Little-Parks effect in a single mesoscopic Al loop

Strunk et al, PRB, 54, R12701 (1996)




Little-Parks effect in a single mesoscopic Al loop

Strunk et al, PRB, 54, R12701 (1996)




Little-Parks effect in a single mesoscopic Al loop
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Little-Parks effect in a single mesoscopic Al loop

1.21
Strunk et al, PRB, 54, R12701 (1996)
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Little-Parks effect in a single mesoscopic Al loop

Strunk et al, PRB, 54, R12701 (1996)

Too — To(®)  E2(0)m? [(L c1>>2 4 w? <c1>)2

T.o ~ 4q2

Loop (oscillations) \

Parabolic background: Hc (T) in confined SCs




(Non-local) Little-Parks in a mesoscopic Al loop

What if we just measured a piece of the connecting wire? 121

1.22

1.23- . Loop (local)
—~ 1.24

X 195

~ 126
1.97
1.08

1'29-6 3 0 3 6 9 12 15

Too — To(®)  E2(0)m? D\ 4w? (D)’
Teo  4a? <L_¢T> iy <_>

Strunk et al, PRB, 54, R12701 (1996)



(Non-local) Little-Parks in a mesoscopic Al loop

What if we just measured a piece of the connecting wire? 121

1.22
1.23

124
X 195

~" 126
1.27
1.28
1.29

e Loop (local)
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4q2

Strunk et al, PRB, 54, R12701 (1996)




(Non-local) Little-Parks in a mesoscopic Al loop

What if we just measured a piece of the connecting wire? 121

1.22
1.23

124
X 195

~" 126
1.27
1.28
1.29

e Loop (local)
s Lead (non-local)

6 -3 0 3 6 9 12 15

Too — To(®)  E2(0)m? o 2+4w2 D\
Teo ~ 4q2 ®, 3a2 \@,

Strunk et al, PRB, 54, R12701 (1996)




(Non-local) Little-Parks in a mesoscopic Al loop

What if we just measured a piece of the connecting wire?

e Loop (local)
s Lead (non-local)

Too — To(®)  E2(0)m? o > aw? [0\’
e | w) i ()

Strunk et al, PRB, 54, R12701 (1996)



NANOSTRUCTURED

End Of LeCtu re 2 SUPERCONDUCTORS

A lot of the material covered in this lecture
can be found on Moshchalkov’s book

Kaveh Lahabi (2025)
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